×

Spatial filters for bridging molecular dynamics with finite elements at finite temperatures. (English) Zbl 1297.74128

Summary: We present the application of digital filters to split the energy spectrum of an atomistic zone simulated with molecular dynamics into low and high energy components. After a brief background on digital filters, we describe the procedure used to select a cutoff frequency for the filters. Then, a one dimensional numerical model based on the generalized Langevin equation (GLE) is used to study the system dynamics. We tested both time and spatial filters for the frictional term in GLE. Our results demonstrate that spatial filters are better than time filters to perform a selective damping within a molecular dynamics zone. Two dimensional examples validating our approach are also presented. Spatial filters should thus be favored in finite-temperature direct-coupling methods between molecular dynamics and finite elements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
37N15 Dynamical systems in solid mechanics
Full Text: DOI

References:

[1] Rudd, R. E.; Broughton, J. Q., Concurrent coupling of length scales in solid state systems, Phys. Status Solidi B, 217, 1, 251-291 (2000), ISSN 1521-3951, http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1251::AID-PSSB2513.0.CO;2-A/abstract
[2] Weinan, E.; Engquist, B., Multiscale modeling and computation, Notices Amer Math. Soc., 50, 50, 10621070 (2003), <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.2226> · Zbl 1032.65013
[3] Weinan, E.; Engquist, B.; Li, X.; Ren, W.; Vanden-Eijnden, E., Heterogeneous multiscale methods: a review, Commun. Comput. Phys., 2, 3, 367-450 (2007) · Zbl 1164.65496
[4] Miller, R.; Tadmor, E. B.; Phillips, R.; Ortiz, M., Quasicontinuum simulation of fracture at the atomic scale, Model. Simul. Mater. Sci. Engrg., 6, 5, 607-638 (1998)
[5] Miller, R.; Tadmor, E. B., The quasicontinuum method: overview, applications and current directions, J. Computer-Aided Mater. Design, 9, 3, 203-239 (2002), http://dx.doi.org/10.1023/A:1026098010127
[6] Park, H. S.; Karpov, E. G.; Klein, P. A.; Liu, W. K., Three-dimensional bridging scale analysis of dynamic fracture, J. Comput. Phys., 207, 2, 588-609 (2005) · Zbl 1213.74267
[7] Anciaux, G.; Molinari, J. F., Contact mechanics at the nanoscale a 3D multiscale approach, Int. J. Numer. Methods Engrg., 79, 9, 1041-1067 (2009) · Zbl 1176.74132
[9] Ringlein, J.; Robbins, M. O., Understanding and illustrating the atomic origins of friction, Amer. J. Phys., 72, 7, 884-891 (2004), <http://link.aip.org/link/?AJP/72/884/1>
[10] Spijker, P.; Anciaux, G.; Molinari, J. F., Dry sliding contact between rough surfaces at the atomistic scale, Tribol. Lett., 44, 2, 279-285 (2011), <http://www.springerlink.com/content/d6x7011x61v06571/>
[13] Curtin, W. A.; Miller, R. E., Atomistic/continuum coupling in computational materials science, Model. Simul. Mater. Sci. Engrg., 11, 3, R33-R68 (2003), ISSN 0965-0393. <http://www.iop.org/EJ/abstract/0965-0393/11/3/201/>
[14] Liu, W. K.; Karpov, E. G.; Zhang, S.; Park, H. S., An introduction to computational nanomechanics and materials, Comput. Methods Appl. Mech. Engrg., 193, 17-20, 1529-1578 (2004), ISSN 0045-7825, <http://www.sciencedirect.com/science/article/B6V29-4BMJY49-2/2/baa944a38ce7cf2946263ad3289c7032> · Zbl 1079.74506
[15] Park, H. S.; Liu, W. K., An introduction and tutorial on multiple-scale analysis in solids, Comput. Methods Appl. Mech. Engrg., 193, 17-20, 1733-1772 (2004), ISSN 0045-7825. <http://www.sciencedirect.com/science/article/B6V29-4BS0H87-7/2/eef3d096> · Zbl 1079.74508
[16] Miller, R. E.; Tadmor, E. B., A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Model. Simul. Mater. Sci. Engrg., 17, 5, 053001 (2009), ISSN 0965-0393, 1361-651X. <http://iopscience.iop.org/0965-0393/17/5/053001>
[17] Kohlhoff, S.; Gumbsch, P.; Fischmeister, H. F., Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model, Phil. Mag. A, 64, 4, 851-878 (1991), ISSN 0141-8610. <http://www.tandfonline.com/doi/abs/10.1080/01418619108213953#preview>
[18] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73, 6, 1529-1563 (1996)
[19] Broughton, J.; Abraham, F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and application, Phys. Rev. B, 60, 4, 2391-2403 (1999), ISSN 0163-1829. <http://prb.aps.org/abstract/PRB/v60/i4/p23911>
[20] Shilkrot, L. E.; Miller, R. E.; Curtin, W. A., Coupled atomistic and discrete dislocation plasticity, Phys. Rev. Lett., 89, 2, 025501 (2002), <http://link.aps.org/doi/10.1103/PhysRevLett.89.025501>
[21] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 1, 249-274 (2003), ISSN 0021-9991. <http://www.sciencedirect.com/science/article/pii/S0021999103002730> · Zbl 1169.74635
[22] Xiao, S. P.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg., 193, 17-20, 1645-1669 (2004), ISSN 0045-7825. <http://www.sciencedirect.com/science/article/B6V29-4BY40K1-1/2/2dd73b07> · Zbl 1079.74509
[24] Anciaux, G.; Ramisetti, S. B.; Molinari, J. F., A finite temperature bridging domain method for MD-FE coupling and application to a contact problem, Comput. Methods Appl. Mech. Engrg., 205-208, 204-212 (2011), ISSN 00457825. <http://sd.ddns.us/science/article/pii/S0045782511000132#s0030>
[25] Park, H. S.; Karpov, E. G.; Liu, W. K., A temperature equation for coupled atomistic/continuum simulations, Comput. Methods Appl. Mech. Engrg., 193, 17-20, 1713-1732 (2004), ISSN 0045-7825. <http://www.sciencedirect.com/science/article/B6V29-4BMTKNJ-6/2/8ad2a212> · Zbl 1079.74507
[26] Liu, J.; Chen, S.; Nie, X.; Robbins, M. O., A continuum-atomistic simulation of heat transfer in micro- and nano-flows, J. Comput. Phys., 227, 1, 279-291 (2007), ISSN 0021-9991. <http://www.sciencedirect.com/science/article/B6WHY-4PB6W96-1/2/1817eb09> · Zbl 1130.80010
[27] Kulkarni, Y.; Knap, J.; Ortiz, M., A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature, J. Mech. Phys. Solids, 56, 4, 417-1449 (2008), ISSN 0022-5096. <http://www.sciencedirect.com/science/article/pii/S0022509607001834> · Zbl 1171.74310
[28] Wagner, G. J.; Jones, R. E.; Templeton, J. A.; Parks, M. L., An atomistic-to-continuum coupling method for heat transfer in solids, Comput. Methods Appl. Mech. Engrg., 197, 41-42, 3351-3365 (2008), ISSN 0045-7825. <http://www.sciencedirect.com/science/article/B6V29-4RVG3GB-1/2/85b3d12d> · Zbl 1159.74305
[29] Mathew, N.; Picu, R. C.; Bloomfield, M., Concurrent coupling of atomistic and continuum models at finite temperature, Comput. Methods Appl. Mech. Engrg., 200, 5-8, 765-773 (2011), ISSN 0045-7825. <http://www.sciencedirect.com/science/article/pii/S0045782510002793> · Zbl 1225.74010
[31] To, A. C.; Fu, Y.; Liu, W. K., Denoising methods for thermomechanical decomposition for quasi-equilibrium molecular dynamics simulations, Comput. Methods Appl. Mech. Engrg., 200, 23-24, 1979-1992 (2011), ISSN 0045-7825. <http://www.sciencedirect.com/science/article/pii/S0045782511001095> · Zbl 1228.74118
[32] Adelman, S. A., Generalized langevin equation approach for atom/solid-surface scattering collinear atom/harmonic chain model, J. Chem. Phys., 61, 10, 4242-4246 (1974), ISSN 00219606. http://link.aip.org/link/?JCP/61/4242/1Agg=doi
[33] Adelman, S. A., Generalized langevin theory for gas/solid processes: dynamical solid models, J. Chem. Phys., 65, 9, 3751-3762 (1976), ISSN 00219606. <http://link.aip.org/link/?JCP/65/3751/1&Agg=doi>
[34] Adelman, S. A., Generalized langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids, The Journal of Chemical Physics, 64, 6, 2375-2389 (1976), ISSN 00219606. <http://link.aip.org/link/?JCP/64/2375/1&Agg=doi>
[35] Cai, W.; de Koning, M.; Bulatov, V. V.; Yip, S., Minimizing boundary reflections in coupled-domain simulations, Phys. Rev. Lett., 85, 15, 3213-3216 (2000), <http://link.aps.org/doi/10.1103/PhysRevLett.85.3213>
[36] Karpov, E. G.; Park, H. S.; Liu, W. K., A phonon heat bath approach for the atomistic and multiscale simulation of solids, Int. J. Numer. Methods Engrg., 70, 3, 351-378 (2007), ISSN 1097-0207 · Zbl 1194.74526
[39] Russ, J. C., The Image Processing Handbook (2011), CRC Press, April · Zbl 1216.68327
[42] Berendsen, H. J.C., Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics (2007), Cambridge University Press, ISBN 9780521835275 · Zbl 1134.00009
[43] Kubo, R., The fluctuation-dissipation theorem, Reports Prog. Phys., 29, 1, 255-284 (1966), ISSN 00344885. <http://iopscience.iop.org/0034-4885/29/1/306> · Zbl 0163.23102
[44] Phillips, S. C.; Essex, J. W.; Edge, C. M., Digitally filtered molecular dynamics: The frequency specific control of molecular dynamics simulations, The Journal of Chemical Physics, 112, 6, 2586-2597 (2000), ISSN 00219606. <http://jcp.aip.org/resource/1/jcpsa6/v112/i6/p2586s1>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.