×

Integrable sigma models at RG fixed points: quantisation as affine Gaudin models. (English) Zbl 07802660

Summary: The goal of this paper is to make first steps towards the quantisation of integrable nonlinear sigma models using the formalism of affine Gaudin models, by approaching these theories through their conformal limits. We focus mostly on the example of the Klimčík model, which is a two-parameter deformation of the principal chiral model on a Lie group \(G\). We show that the UV fixed point of this theory is described classically by two decoupled chiral affine Gaudin models, encoding its left- and right-moving degrees of freedom, and give a detailed analysis of the chiral and integrable structures of these models. Their quantisation is then explored within the framework of B. Feigin and E. Frenkel [Lect. Notes Math. 1620, 349–418 (1996; Zbl 0885.58034)]. We study the quantum local integrals of motion using the formalism of quantised affine Gaudin models and show agreement of the first two integrals with known results in the literature for \(G=\mathrm{SU}(2)\). Evidence is given for the existence of a monodromy matrix satisfying the Yang-Baxter algebra for this model, thus paving the way for the quantisation of the non-local integrals of motion. We conclude with various perspectives, including on generalisations of this programme to a larger class of integrable sigma models and applications of the ODE/IQFT correspondence to the description of their quantum spectrum.

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81Q80 Special quantum systems, such as solvable systems
81U15 Exactly and quasi-solvable systems arising in quantum theory
81S08 Canonical quantization
16T25 Yang-Baxter equations
17B80 Applications of Lie algebras and superalgebras to integrable systems
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz

Citations:

Zbl 0885.58034

Software:

Mathematica

References:

[1] Polyakov, AM, Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields, Phys. Lett. B, 59, 79 (1975) · doi:10.1016/0370-2693(75)90161-6
[2] Beisert, N., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3 (2012) · doi:10.1007/s11005-011-0529-2
[3] Fateev, VA, The duality between two-dimensional integrable field theories and sigma models, Phys. Lett. B, 357, 397 (1995) · doi:10.1016/0370-2693(95)00883-M
[4] Fateev, VA, The sigma model (dual) representation for a two-parameter family of integrable quantum field theories, Nucl. Phys. B, 473, 509 (1996) · Zbl 0925.81297 · doi:10.1016/0550-3213(96)00256-8
[5] Fateev, VA; Onofri, E.; Zamolodchikov, AB, Integrable deformations of the O(3) sigma model. The sausage model, Nucl. Phys. B, 406, 521 (1993) · Zbl 0990.81683 · doi:10.1016/0550-3213(93)90001-6
[6] Faddeev, LD; Sklyanin, EK; Takhtajan, LA, The quantum inverse problem method. I, Theor. Math. Phys., 40, 688 (1980) · Zbl 1138.37331 · doi:10.1007/BF01018718
[7] Maillet, JM, Kac-Moody algebra and extended Yang-Baxter relations in the \(O(N)\) non-linear sigma model, Phys. Lett. Ser., B162, 137 (1985) · doi:10.1016/0370-2693(85)91075-5
[8] Maillet, JM, New integrable canonical structures in two-dimensional models, Nucl. Phys. Ser., B269, 54 (1986) · doi:10.1016/0550-3213(86)90365-2
[9] Gromov, N.; Kazakov, V.; Vieira, P., Finite volume spectrum of 2D field theories from Hirota dynamics, JHEP, 12, 060 (2009) · doi:10.1088/1126-6708/2009/12/060
[10] Fateev, VA, Integrable deformations of Sine-Liouville conformal field theory and duality, SIGMA, 13, 080 (2017) · Zbl 1388.16035 · doi:10.3842/SIGMA.2017.080
[11] Bazhanov, VV; Kotousov, GA; Lukyanov, SL, Quantum transfer-matrices for the sausage model, JHEP, 01, 021 (2018) · Zbl 1384.81081 · doi:10.1007/JHEP01(2018)021
[12] Lukyanov, SL, ODE/IM correspondence for the Fateev model, JHEP, 12, 012 (2013) · Zbl 1342.81244 · doi:10.1007/JHEP12(2013)012
[13] Bazhanov, VV; Lukyanov, SL, Integrable structure of quantum field theory: classical flat connections versus quantum stationary states, JHEP, 09, 147 (2014) · Zbl 1333.81193 · doi:10.1007/JHEP09(2014)147
[14] Bazhanov, VV; Kotousov, GA; Lukyanov, SL, Winding vacuum energies in a deformed O(4) sigma model, Nucl. Phys. B, 889, 817 (2014) · Zbl 1326.81119 · doi:10.1016/j.nuclphysb.2014.11.005
[15] Zamolodchikov, AB, Integrable field theory from conformal field theory, Adv. Stud. Pure Math., 19, 641 (1989) · Zbl 0703.17014 · doi:10.2969/aspm/01910641
[16] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys., 177, 381 (1996) · Zbl 0851.35113 · doi:10.1007/BF0210189
[17] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys., 190, 247 (1997) · Zbl 0908.35114 · doi:10.1007/s002200050240
[18] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys., 200, 297 (1999) · Zbl 1057.81531 · doi:10.1007/s002200050531
[19] Fateev, VA; Zamolodchikov, AB, Conformal quantum field theory models in two-dimensions having Z(3) symmetry, Nucl. Phys. B, 280, 644 (1987) · doi:10.1016/0550-3213(87)90166-0
[20] Fateev, VA; Lukyanov, SL, The models of two-dimensional conformal quantum field theory with Z(n) symmetry, Int. J. Mod. Phys. A, 3, 507 (1988) · doi:10.1142/S0217751X88000205
[21] Feigin, B.; Frenkel, E., Free field resolutions in affine Toda field theories, Phys. Lett. B, 276, 79 (1992) · doi:10.1016/0370-2693(92)90544-E
[22] Feigin, B.; Frenkel, E., Integrals of motion and quantum groups, Lect. Notes Math., 1620, 349 (1996) · Zbl 0885.58034 · doi:10.1007/BFb0094794
[23] Dorey, P.; Tateo, R., Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations, J. Phys. A, 32, L419 (1999) · Zbl 0953.81016 · doi:10.1088/0305-4470/32/38/102
[24] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Spectral determinants for Schroedinger equation and Q operators of conformal field theory, J. Stat. Phys., 102, 567 (2001) · Zbl 0983.81019 · doi:10.1023/A:1004838616921
[25] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Higher level eigenvalues of Q operators and Schroedinger equation, Adv. Theor. Math. Phys., 7, 711 (2003) · Zbl 1055.81521 · doi:10.4310/ATMP.2003.v7.n4.a4
[26] Conti, R.; Masoero, D., Counting monster potentials, JHEP, 02, 059 (2021) · Zbl 1460.81025 · doi:10.1007/JHEP02(2021)059
[27] Conti, R., Masoero, D.: On solutions of the Bethe Ansatz for the quantum KdV model. arXiv:2112.14625 · Zbl 07719657
[28] Dorey, P.; Dunning, C.; Tateo, R., The ODE/IM correspondence, J. Phys. A, 40, R205 (2007) · Zbl 1120.81044 · doi:10.1088/1751-8113/40/32/R01
[29] Dorey, P.; Dunning, C.; Negro, S.; Tateo, R., Geometric aspects of the ODE/IM correspondence, J. Phys. A, 53 (2020) · Zbl 1514.81222 · doi:10.1088/1751-8121/ab83c9
[30] Bazhanov, VV; Lukyanov, SL; Runov, BA, Vacuum energy of the Bukhvostov-Lipatov model, Nucl. Phys. B, 911, 863 (2016) · Zbl 1346.81064 · doi:10.1016/j.nuclphysb.2016.08.031
[31] Bazhanov, VV; Lukyanov, SL; Runov, BA, Bukhvostov-Lipatov model and quantum-classical duality, Nucl. Phys. B, 927, 468 (2018) · Zbl 1380.81190 · doi:10.1016/j.nuclphysb.2017.12.022
[32] Feigin, B., Frenkel, E.: Quantization of soliton systems and Langlands duality. In: Exploration of New Structures and Natural Constructions in Mathematical Physics. Advanced Studies in Pure Mathematics, vol. 61, pp. 185-274 (2011). doi:10.1142/e032. [arXiv:0705.2486] · Zbl 1245.81062
[33] Levin, AM; Olshanetsky, MA; Zotov, A., Hitchin systems-symplectic Hecke correspondence and two-dimensional version, Commun. Math. Phys., 236, 93 (2003) · Zbl 1088.14008 · doi:10.1007/s00220-003-0801-0
[34] Lacroix, S.; Vicedo, B.; Young, CAS, Affine Gaudin models and hypergeometric functions on affine opers, Adv. Math., 350, 486 (2019) · Zbl 1459.17043 · doi:10.1016/j.aim.2019.04.032
[35] Lacroix, S.; Vicedo, B.; Young, CAS, Cubic hypergeometric integrals of motion in affine Gaudin models, Adv. Theor. Math. Phys., 24, 155 (2020) · Zbl 1518.81063 · doi:10.4310/ATMP.2020.v24.n1.a5
[36] Young, CAS, An analog of the Feigin-Frenkel homomorphism for double loop algebras, J. Algebra, 588, 1 (2021) · Zbl 1482.17059 · doi:10.1016/j.jalgebra.2021.07.031
[37] Gaudin, M., Diagonalisation d’une classe d’hamiltoniens de spin, J. Phys. France, 37, 1087 (1976) · doi:10.1051/jphys:0197600370100108700
[38] Gaudin, M., La fonction d’onde de Bethe (1983), Paris: Masson, Paris · Zbl 0509.60093
[39] Feigin, B.; Frenkel, E.; Reshetikhin, N., Gaudin model, Bethe ansatz and correlation functions at the critical level, Commun. Math. Phys., 166, 27 (1994) · Zbl 0812.35103 · doi:10.1007/BF02099300
[40] Frenkel, E.; Hernandez, D., Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers, Commun. Math. Phys., 362, 361 (2018) · Zbl 1397.81060 · doi:10.1007/s00220-018-3194-9
[41] Masoero, D.; Raimondo, A.; Valeri, D., Bethe Ansatz and the spectral theory of affine Lie algebra-valued connections I. The simply-laced case, Commun. Math. Phys., 344, 719 (2016) · Zbl 1347.82011 · doi:10.1007/s00220-016-2643-6
[42] Masoero, D.; Raimondo, A.; Valeri, D., Bethe Ansatz and the spectral theory of affine Lie algebra-valued connections II: the non simply-laced case, Commun. Math. Phys., 349, 1063 (2017) · Zbl 1359.82010 · doi:10.1007/s00220-016-2744-2
[43] Bazhanov, VV; Hibberd, AN; Khoroshkin, SM, Integrable structure of W(3) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B, 622, 475 (2002) · Zbl 0983.81088 · doi:10.1016/S0550-3213(01)00595-8
[44] Gaiotto, D.; Lee, JH; Wu, J., Integrable Kondo problems, JHEP, 04, 268 (2021) · Zbl 1462.81107 · doi:10.1007/JHEP04(2021)268
[45] Gaiotto, D.; Lee, JH; Vicedo, B.; Wu, J., Kondo line defects and affine Gaudin models, JHEP, 01, 175 (2022) · Zbl 1521.81105 · doi:10.1007/JHEP01(2022)175
[46] Kotousov, GA; Lukyanov, SL, ODE/IQFT correspondence for the generalized affine \(\mathfrak{sl} (2)\) Gaudin model, JHEP, 09, 201 (2021) · Zbl 1472.81117 · doi:10.1007/JHEP09(2021)201
[47] Vicedo, B., On integrable field theories as dihedral affine Gaudin models, Int. Math. Res. Not. Ser., 2020, 15 (2020) · Zbl 1484.81057 · doi:10.1093/imrn/rny128
[48] Delduc, F.; Lacroix, S.; Magro, M.; Vicedo, B., Assembling integrable \(\sigma \)-models as affine Gaudin models, JHEP Ser., 06, 017 (2019) · Zbl 1416.81082 · doi:10.1007/JHEP06(2019)017
[49] Lacroix, S., Constrained affine Gaudin models and diagonal Yang-Baxter deformations, J. Phys. Ser., A53 (2020) · Zbl 1519.37086 · doi:10.1088/1751-8121/ab876e
[50] Klimčík, C., On integrability of the Yang-Baxter sigma-model, J. Math. Phys., 50 (2009) · Zbl 1215.81099 · doi:10.1063/1.3116242
[51] Klimčík, C., Integrability of the Bi-Yang-Baxter sigma-model, Lett. Math. Phys., 104, 1095 (2014) · Zbl 1359.70102 · doi:10.1007/s11005-014-0709-y
[52] Hoare, B.; Roiban, R.; Tseytlin, AA, On deformations of \(AdS_n\times S^n\) supercosets, JHEP, 06, 002 (2014) · doi:10.1007/JHEP06(2014)002
[53] Bazhanov, VV; Kotousov, GA; Lukyanov, SL, On the Yang-Baxter Poisson algebra in non-ultralocal integrable systems, Nucl. Phys. B, 934, 529 (2018) · Zbl 1395.81273 · doi:10.1016/j.nuclphysb.2018.07.016
[54] Hoare, B., Towards a two-parameter q-deformation of \(\text{AdS}_3 \times S^3 \times M^4\) superstrings, Nucl. Phys. B, 891, 259 (2015) · Zbl 1328.81178 · doi:10.1016/j.nuclphysb.2014.12.012
[55] Delduc, F.; Lacroix, S.; Magro, M.; Vicedo, B., On the Hamiltonian integrability of the Bi-Yang-Baxter sigma-model, JHEP, 03, 104 (2016) · Zbl 1388.81258 · doi:10.1007/JHEP03(2016)104
[56] Sfetsos, K.; Siampos, K.; Thompson, DC, Generalised integrable \(\lambda \)- and \(\eta \)-deformations and their relation, Nucl. Phys. B, 899, 489 (2015) · Zbl 1331.81248 · doi:10.1016/j.nuclphysb.2015.08.015
[57] Delduc, F.; Lacroix, S.; Sfetsos, K.; Siampos, K., RG flows of integrable \(\sigma \)-models and the twist function, JHEP Ser., 02, 065 (2021) · Zbl 1460.81079 · doi:10.1007/JHEP02(2021)065
[58] Hassler, F., RG flow of integrable \({\cal{E} } \)-models, Phys. Lett. B, 818 (2021) · Zbl 07409669 · doi:10.1016/j.physletb.2021.136367
[59] Lukyanov, SL, The integrable harmonic map problem versus Ricci flow, Nucl. Phys. B, 865, 308 (2012) · Zbl 1262.81145 · doi:10.1016/j.nuclphysb.2012.08.002
[60] Dirac, PAM, Lectures on Quantum Mechanics (1964), Yeshiva University, Belfer Graduate School of Science
[61] Lacroix, S.; Magro, M.; Vicedo, B., Local charges in involution and hierarchies in integrable sigma-models, JHEP, 1709, 117 (2017) · Zbl 1382.81114 · doi:10.1007/JHEP09(2017)117
[62] Evans, JM; Hassan, M.; MacKay, NJ; Mountain, AJ, Local conserved charges in principal chiral models, Nucl. Phys. B, 561, 385 (1999) · Zbl 0958.81028 · doi:10.1016/S0550-3213(99)00489-7
[63] Delduc, F.; Magro, M.; Vicedo, B., On classical \(q\)-deformations of integrable \(\sigma \)-models, JHEP Ser., 1311, 192 (2013) · Zbl 1342.81182 · doi:10.1007/JHEP11(2013)192
[64] Vicedo, B., Deformed integrable \(\sigma \)-models, classical R-matrices and classical exchange algebra on Drinfel’d doubles, J. Phys. A, 48 (2015) · Zbl 1422.37037 · doi:10.1088/1751-8113/48/35/355203
[65] Friedan, D., Nonlinear models in \(2+\epsilon\) dimensions, Phys. Rev. Lett., 45, 1057 (1980) · doi:10.1103/PhysRevLett.45.1057
[66] Friedan, D., Nonlinear models in \(2+\epsilon\) dimensions, Annals Phys., 163, 318 (1985) · Zbl 0583.58010 · doi:10.1016/0003-4916(85)90384-7
[67] Fradkin, ES; Tseytlin, AA, Quantum string theory effective action, Nucl. Phys. B, 261, 1 (1985) · doi:10.1016/0550-3213(85)90559-0
[68] Callan, CG Jr; Martinec, EJ; Perry, MJ; Friedan, D., Strings in background fields, Nucl. Phys. B, 262, 593 (1985) · doi:10.1016/0550-3213(85)90506-1
[69] Valent, G.; Klimcik, C.; Squellari, R., One loop renormalizability of the Poisson-Lie sigma models, Phys. Lett. B, 678, 143 (2009) · doi:10.1016/j.physletb.2009.06.001
[70] Hamilton, R.S.: The Ricci flow on surfaces. In: Mathematics and General Relativity, Contemporary Mathematics, vol. 71. Amer. Math. Soc., Providence, p. 237 (1988) · Zbl 0663.53031
[71] Elitzur, S.; Forge, A.; Rabinovici, E., Some global aspects of string compactifications, Nucl. Phys. B, 359, 581 (1991) · doi:10.1016/0550-3213(91)90073-7
[72] Witten, E., On string theory and black holes, Phys. Rev. D, 44, 314 (1991) · Zbl 0900.53037 · doi:10.1103/PhysRevD.44.314
[73] Lepowsky, J.; Wilson, RL, The structure of standard modules, I: universal algebras and the Rogers-Ramanujan identities, Invent. Math., 77, 199 (1984) · Zbl 0577.17009 · doi:10.1007/BF01388447
[74] Fateev, VA; Zamolodchikov, AB, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems, Sov. Phys. JETP, 62, 215 (1985)
[75] Ninomiya, M.; Yamagishi, K., Nonlocal SU(3) current algebra, Phys. Lett. B, 183, 323 (1987) · doi:10.1016/0370-2693(87)90972-5
[76] Gepner, D., New conformal field theories associated with lie algebras and their partition functions, Nucl. Phys. B, 290, 10 (1987) · doi:10.1016/0550-3213(87)90176-3
[77] Bardakci, K.; Crescimanno, MJ; Rabinovici, E., Parafermions From coset models, Nucl. Phys. B, 344, 344 (1990) · doi:10.1016/0550-3213(90)90365-K
[78] Dotsenko, VS; Fateev, VA, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B, 240, 312 (1984) · doi:10.1016/0550-3213(84)90269-4
[79] Bakas, I.; Kiritsis, E., Beyond the large N limit: non-linear \(W_\infty\) as symmetry of the SL(2, R)/U(1) coset model, Int. J. Mod. Phys. A, 7, 55 (1992) · Zbl 0925.17032 · doi:10.1142/S0217751X92003720
[80] Dorey, P.; Korchemsky, G.; Nekrasov, N.; Schomerus, V.; Serban, D.; Cugliandolo, L., Integrability: From Statistical Systems to Gauge Theory (2019), Oxford University Press · Zbl 1423.37006
[81] Lukyanov, SL; Zamolodchikov, AB, Integrable boundary interaction in 3D target space: the “pillow-brane” model, Nucl. Phys. B, 873, 585 (2013) · Zbl 1282.81150 · doi:10.1016/j.nuclphysb.2013.05.008
[82] Feigin, BL; Semikhatov, AM, The sl(2) + sl(2)/sl(2) coset theory as a Hamiltonian reduction of D \((2 |1\) alpha) superalgebra, JETP Lett., 74, 59 (2001) · doi:10.1134/1.1402208
[83] Young, CAS, Non-local charges, Z(m) gradings and coset space actions, Phys. Lett. B, 632, 559 (2006) · Zbl 1247.81420 · doi:10.1016/j.physletb.2005.10.090
[84] Hoare, B., Integrable deformations of sigma models, J. Phys. A, 55 (2022) · Zbl 1505.81051 · doi:10.1088/1751-8121/ac4a1e
[85] Bardakci, K.; Crescimanno, MJ; Hotes, S., Parafermions from nonabelian coset models, Nucl. Phys. B, 349, 439 (1991) · doi:10.1016/0550-3213(91)90332-R
[86] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., The classical origin of quantum affine algebra in squashed sigma models, JHEP, 04, 115 (2012) · Zbl 1348.81320 · doi:10.1007/JHEP04(2012)115
[87] Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B., Affine \(q\)-deformed symmetry and the classical Yang-Baxter \(\sigma \)-model, JHEP, 03, 126 (2017) · Zbl 1377.81094 · doi:10.1007/JHEP03(2017)126
[88] Khoroshkin, SM; Stolin, AA; Tolstoi, VN, Gauss decomposition of trigonometric R matrices, Mod. Phys. Lett. A, 10, 1375 (1995) · Zbl 1022.81533 · doi:10.1142/S0217732395001496
[89] Sklyanin, E.K.: On the complete integrability of the Landau-Lifshitz equation, preprint LOMI E-3-79 (1979). https://cds.cern.ch/record/121210 · Zbl 0449.35089
[90] Duncan, A.; Nicolai, H.; Niedermaier, M., On the Poisson bracket algebra of monodromy matrices, Z. Phys. C, 46, 147 (1990) · doi:10.1007/BF02440845
[91] Hlousek, Z.; Yamagishi, K., An approach to BRST formulation of Kac-Moody algebra, Phys. Lett. B, 173, 65 (1986) · Zbl 0696.17014 · doi:10.1016/0370-2693(86)91231-1
[92] Goddard, P.; Kent, A.; Olive, DI, Virasoro algebras and coset space models, Phys. Lett. B, 152, 88 (1985) · Zbl 0661.17015 · doi:10.1016/0370-2693(85)91145-1
[93] Goddard, P.; Kent, A.; Olive, DI, Unitary representations of the virasoro and supervirasoro algebras, Commun. Math. Phys., 103, 105 (1986) · Zbl 0588.17014 · doi:10.1007/BF01464283
[94] Thielemans, K., A mathematica package for computing operator product expansions, Int. J. Mod. Phys. C, 2, 787 (1991) · Zbl 0940.81500 · doi:10.1142/S0129183191001001
[95] Reshetikhin, N., Varchenko, A.: Quasiclassical asymptotics of solutions to the KZ equations. arXiv:hep-th/9402126
[96] Feigin, B.; Jimbo, M.; Mukhin, E., Towards trigonometric deformation of \(\widehat{\mathfrak{sl} }_2\) coset VOA, J. Math. Phys., 60 (2019) · Zbl 1416.81093 · doi:10.1063/1.5081799
[97] Feigin, B.; Jimbo, M.; Mukhin, E., Integrals of motion from quantum toroidal algebras, J. Phys. A, 50 (2017) · Zbl 1386.82037 · doi:10.1088/1751-8121/aa8e92
[98] Fateev, VA; Litvinov, AV, Integrability, duality and sigma models, JHEP, 11, 204 (2018) · Zbl 1405.81125 · doi:10.1007/JHEP11(2018)204
[99] Litvinov, AV; Spodyneiko, LA, On dual description of the deformed \(O(N)\) sigma model, JHEP, 11, 139 (2018) · Zbl 1404.81136 · doi:10.1007/JHEP11(2018)139
[100] Alfimov, M.; Feigin, B.; Hoare, B.; Litvinov, A., Dual description of \(\eta \)-deformed OSP sigma models, JHEP, 12, 040 (2020) · Zbl 1457.81053 · doi:10.1007/JHEP12(2020)040
[101] Bardakci, K.; Bernardo, LM; Sochen, N., Integrable generalized Thirring model, Nucl. Phys. Ser., B487, 513 (1997) · Zbl 0925.81074 · doi:10.1016/S0550-3213(96)00715-8
[102] Georgiou, G.; Sfetsos, K., A new class of integrable deformations of CFTs, JHEP, 03, 083 (2017) · Zbl 1377.81170 · doi:10.1007/JHEP03(2017)083
[103] Arutyunov, G.; Bassi, C.; Lacroix, S., New integrable coset sigma models, JHEP, 03, 062 (2021) · Zbl 1461.81054 · doi:10.1007/JHEP03(2021)062
[104] Levine, N.; Tseytlin, AA, Integrability vs. RG flow in \(G \times G\) and \(G \times G /H\) sigma models, JHEP, 05, 076 (2021) · doi:10.1007/JHEP05(2021)076
[105] Guadagnini, E.; Martellini, M.; Mintchev, M., Scale invariant sigma models on homogeneous spaces, Phys. Lett. Ser., B194, 69 (1987) · doi:10.1016/0370-2693(87)90771-4
[106] Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Frontiers in Number Theory, Physics, and Geometry II, p. 387. Springer, Berlin, (2007). doi:10.1007/978-3-540-30308-4_11 [arXiv:hep-th/0512172] · Zbl 1196.11091
[107] Faddeev, LD; Volkov, AY, Quantum inverse scattering method on a space-time lattice, Theor. Math. Phys., 92, 837 (1992) · doi:10.1007/BF01015552
[108] Bazhanov, V.; Bobenko, A.; Reshetikhin, N., Quantum discrete sine-Gordon model at roots of 1: integrable quantum system on the integrable classical background, Commun. Math. Phys., 175, 377 (1996) · Zbl 0846.35116 · doi:10.1007/BF02102413
[109] Bytsko, A.; Teschner, J., The Integrable structure of nonrational conformal field theory, Adv. Theor. Math. Phys., 17, 701 (2013) · Zbl 1431.81135 · doi:10.4310/ATMP.2013.v17.n4.a1
[110] Ridout, D.; Teschner, J., Integrability of a family of quantum field theories related to sigma models, Nucl. Phys. B, 853, 327 (2011) · Zbl 1229.81207 · doi:10.1016/j.nuclphysb.2011.07.019
[111] Meneghelli, C.; Teschner, J., Integrable light-cone lattice discretizations from the universal \(\rm R \)-matrix, Adv. Theor. Math. Phys., 21, 1189 (2017) · Zbl 1425.81086 · doi:10.4310/ATMP.2017.v21.n5.a3
[112] Sfetsos, K., Integrable interpolations: from exact CFTs to non-Abelian T-duals, Nucl. Phys. B, 880, 225 (2014) · Zbl 1284.81257 · doi:10.1016/j.nuclphysb.2014.01.004
[113] Hoare, B.; Tseytlin, AA, On integrable deformations of superstring sigma models related to \(AdS_n \times S^n\) supercosets, Nucl. Phys. B, 897, 448 (2015) · Zbl 1329.81317 · doi:10.1016/j.nuclphysb.2015.06.001
[114] Klimcik, C.; Severa, P., Dual non-abelian duality and the Drinfeld double, Phys. Lett. B, 351, 455 (1995) · doi:10.1016/0370-2693(95)00451-P
[115] Klimcik, C.; Severa, P., Poisson-Lie T-duality and loop groups of Drinfeld doubles, Phys. Lett. B, 372, 65 (1996) · Zbl 1037.81576 · doi:10.1016/0370-2693(96)00025-1
[116] Sfetsos, K.; Siampos, K., Integrable deformations of the \(G_{k_1} \times G_{k_2}/G_{k_1+k_2}\) coset CFTs, Nucl. Phys. B, 927, 124 (2018) · Zbl 1380.81361 · doi:10.1016/j.nuclphysb.2017.12.011
[117] Klimčík, C., Poisson-Lie T-duals of the Bi-Yang-Baxter models, Phys. Lett. B, 760, 345 (2016) · Zbl 1398.70057 · doi:10.1016/j.physletb.2016.06.077
[118] Georgiou, G.; Sfetsos, K.; Siampos, K., Strong integrability of \(\lambda \)-deformed models, Nucl. Phys. B, 952 (2020) · Zbl 1473.81163 · doi:10.1016/j.nuclphysb.2020.114923
[119] Sfetsos, K., Canonical equivalence of nonisometric sigma models and Poisson-Lie T duality, Nucl. Phys. B, 517, 549 (1998) · Zbl 0945.81022 · doi:10.1016/S0550-3213(97)00823-7
[120] Itsios, G.; Sfetsos, K.; Siampos, K., The all-loop non-Abelian Thirring model and its RG flow, Phys. Lett. B, 733, 265 (2014) · Zbl 1370.81104 · doi:10.1016/j.physletb.2014.04.061
[121] Appadu, C.; Hollowood, TJ, Beta function of k deformed \(\text{ AdS}_\[5 \times \]\text{ S}^{\,5}\) string theory, JHEP, 11, 095 (2015) · Zbl 1388.81195 · doi:10.1007/JHEP11(2015)095
[122] Georgiou, G.; Sfetsos, K.; Siampos, K., \( \lambda \)-Deformations of left-right asymmetric CFTs, Nucl. Phys. B, 914, 623 (2017) · Zbl 1353.81106 · doi:10.1016/j.nuclphysb.2016.11.022
[123] Karabali, D.; Schnitzer, HJ, BRST quantization of the gauged WZW action and coset conformal field theories, Nucl. Phys. B, 329, 649 (1990) · doi:10.1016/0550-3213(90)90075-O
[124] Franzini, T., Young, C.A.S.: Quartic Hamiltonians, and higher Hamiltonians at next-to-leading order, for the affine \(\mathfrak{sl}_2\) Gaudin model. arXiv:2205.15815 · Zbl 1519.37060
[125] Delduc, F.; Magro, M.; Vicedo, B., Integrable double deformation of the principal chiral model, Nucl. Phys. B, 891, 312 (2015) · Zbl 1328.81200 · doi:10.1016/j.nuclphysb.2014.12.018
[126] Bassi, C.; Lacroix, S., Integrable deformations of coupled \(\sigma \)-models, JHEP, 05, 059 (2020) · Zbl 1437.81035 · doi:10.1007/JHEP05(2020)059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.