×

Galerkin infinite element approximation for pricing barrier options and options with discontinuous payoff. (English) Zbl 1106.91035

Summary: We analyze the Galerkin infinite element method for pricing European barrier options and, more generally, options with discontinuous payoff. The infinite element method is a simple and efficient modification of the more common finite element method. It keeps the best features of finite elements, i.e., bandedness, ease of programming, accuracy. Three main aspects are considered: (i) the degeneracy of the pricing PDE models at hand; (ii) the presence of discontinuities at the barriers or in the payoff clause and their effects on the numerical approximation process; (iii) the need for resorting to suitable numerical methods for unbounded domains when appropriate asymptotic conditions are not specified. The numerical stability and convergence of the proposed method are proved.

MSC:

91B28 Finance etc. (MSC2000)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65J10 Numerical solutions to equations with linear operators
Full Text: DOI

References:

[1] 1. Andersen, L.B.G, Brotherton-Ratcliffe, R. (1998): The equity option volatility smile: an implicit finite-difference approach. The Journal of Computational Finance 1(2), 5–37
[2] 2. Arbogast, T., Wheeler, M. F., Zhang, N.-Y. (1996): A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM Journal Numerical Analisis 33, 1669–1687 · Zbl 0856.76033 · doi:10.1137/S0036142994266728
[3] 3. Babuška, I. (1972): The finite element method for infinite domains. I. Mathematics of Computation 26, 1–11 · Zbl 0257.35002
[4] 4. Barles, G., Daher, Ch., Romano, M. (1995): Convergence of numerical schemes for parabolic equations arising in finance theory. Mathematical Models and Methods in Applied Sciences 5, 125–143 · Zbl 0822.65056 · doi:10.1142/S0218202595000085
[5] 5. Bettess, P. (1992): Infinite elements. Penshaw, Sunderland, UK · Zbl 0779.68047
[6] 6. Boyle, P.P., Lau, S.H. (1994): Bumping up against the barrier with the binomial method. The Journal of Derivatives 1(4), 6–14 · doi:10.3905/jod.1994.407891
[7] 7. Boyle, P.P., Tian, Y. (1998): An explicit finite difference approach to the pricing of barrier options. Applied Mathematical Finance 5, 17–43 · Zbl 1009.91022 · doi:10.1080/135048698334718
[8] 8. Brezis, H. (1983): Analyse fonctionnelle. Théorie et applications. Masson, Paris
[9] 9. Buffoni, G. (1995): A note on stationary convection-diffusion equations in R 2. Atti del Seminario Matematico e Fisico dell’Università di Modena 43, 519–527 · Zbl 0846.35039
[10] 10. Cheuk, T.H.F., Vorst, T.C.F. (1996): Complex barrier options. The Journal of Derivatives 4(1), 8–22 · doi:10.3905/jod.1996.407958
[11] 11. Costabile, M. (2001): A discrete-time algorithm for pricing double barrier options. Decisions in Economics and Finance 24, 49–58 · Zbl 1168.91382 · doi:10.1007/s102030170009
[12] 12. Figlewski, S., Gao, B. (1999): The adaptive mesh model: a new approach to efficient option pricing. Journal of Financial Economics 53, 313–351 · doi:10.1016/S0304-405X(99)00024-0
[13] 13. Forsyth, P.A., Vetzal, K.R., Zvan, R. (1998): Penalty methods for American options with stochastic volatility. Journal of Computational and Applied Mathematics 91, 199–218 · Zbl 0945.65005 · doi:10.1016/S0377-0427(98)00037-5
[14] 14. Forsyth, P.A., Vetzal, K.R., Zvan, R. (2002): Convergence of numerical methods for valuing path-dependent options using interpolation. Review of Derivatives Research 5, 273–314 · Zbl 1089.91022 · doi:10.1023/A:1020823700228
[15] 15. Forsyth, P.A., Vetzal, K.R., Zvan, R. (1999): A finite element approach to the pricing of discrete lookbacks with stochastic volatility. Applied Mathematical Finance 6, 87–106 · Zbl 1009.91030 · doi:10.1080/135048699334564
[16] 16. Franchi, B., Tesi, M.C. (2000): A finite element approximation for a class of degenerate elliptic equations. Mathematics of Computation 69, 41–63 · Zbl 0941.65117 · doi:10.1090/S0025-5718-99-01075-3
[17] 17. French, D. (1987): The finite element method for a degenerate elliptic equation. SIAM Journal on Numerical Analisis 24, 788–815 · Zbl 0633.65108 · doi:10.1137/0724051
[18] 18. Fujita, H., Suzuki, T. (1991): Evolution problems. In: Ciarlet, P.G., Lions, J.L. (eds.): Handbook of Numerical Analysis. Vol. II. Finite Element Methods., North-Holland, Amsterdam, pp. 789–928 · Zbl 0875.65084
[19] 19. Fusai, G., Sanfelici, S., Tagliani, A. (2002): Practical problems in the numerical solution of PDE’s in Finance. Rendiconti per gli Studi Economici Quantitativi, 2001, 105–132
[20] 20. Geman, H., Yor, M. (1996): Pricing and hedging double-barrier options: A probabilistic approach. Mathematical Finance 6, 365–378 · Zbl 0915.90016 · doi:10.1111/j.1467-9965.1996.tb00122.x
[21] 21. Gozzi, F., Monte, R., Vespri, V. (2002): Generation of analytic semigroups and domain characterization for degenerate elliptic operators with unbounded coefficients arising in financial mathematics. I. Differential and Integral Equations 15, 1085–1128 · Zbl 1033.47028
[22] 22. Heston, S., Zhou, G. (2000): On the rate of convergence of discrete-time contingent claims. Mathematical Finance 10, 53–75 · Zbl 1034.91041 · doi:10.1111/1467-9965.00080
[23] 23. Hull, J., White, A. (1990): Valuing derivative securities using the explicit finite difference method. Journal of Financial and Quantitative Analysis 25, 87–100 · doi:10.2307/2330889
[24] 24. Jackson, N., Süli, E. (1997): Adaptive finite element solutions of 1D European option pricing problems. Technical Report NA-97/05. Oxford University Computing Laboratory, Oxford
[25] 25. Jackson, N., Süli, E., Howison, S. (1999): Computation of deterministic volatility surfaces. The Journal of Computational Finance 2(2), 5–32
[26] 26. Jaillet, P., Lamberton, D., Lapeyre, B. (1990): Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae 21, 263–289 · Zbl 0714.90004 · doi:10.1007/BF00047211
[27] 27. Kangro, R., Nicolaides, R. (2000): Far field boundary conditions for Black-Scholes equations. SIAM Journal on Numerical Analisis 38, 1357–1368 · Zbl 0990.35013 · doi:10.1137/S0036142999355921
[28] 28. Katrakhov, V.V., Katrakhova, A.A. (1984): The finite element method for some degenerate elliptic boundary-value problems. Doklady Akademii Nauk SSSR 279, 799–802. Translation: Soviet Mathematics Doklady 30, 720–723 · Zbl 0593.65067
[29] 29. Kufner, A. (1980): Weighted Sobolev spaces. Teubner-Texte zur Mathematik, 31, Teubner, Leipzig · Zbl 0455.46034
[30] 30. Kunimoto, N., Ikeda, M. (1992): Pricing options with curved boundaries. Mathematical Finance 2, 275–298 · Zbl 0900.90098 · doi:10.1111/j.1467-9965.1992.tb00033.x
[31] 31. Lamberton, D., Lapeyre, B. (1997): Introduction au calcul stochastique appliqué à la finance. 2nd edn. Ellipses, Édition Marketing, Paris · Zbl 0949.60005
[32] 32. Lasiecka, I. (1984): Convergence estimates for semidiscrete approximations of nonselfadjoint parabolic equations. SIAM Journal on Numerical Analisis 21, 894–909 · Zbl 0558.65081 · doi:10.1137/0721058
[33] 33. Liu, W.B., Barrett, J.W. (1995): Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities. Numerical Functional Analisis and Optimization 16, 1309–1321 · Zbl 0861.65076 · doi:10.1080/01630569508816675
[34] 34. Luskin, M., Rannacher, R. (1982): On the smoothing property of the Galerkin method for parabolic equations. SIAM Journal on Numerical Analisis 19, 93–113 · Zbl 0483.65064 · doi:10.1137/0719003
[35] 35. Lyashko, A.D., Timerbaev, M.R. (1993): Accuracy estimates for the schemes of the finite-element method for second order degenerate elliptic equations. Differentsialńye Uravmeniya 29, 1210–1215. Translation: Differential Equations 29, 1049–1053 · Zbl 0833.65121
[36] 36. Mancino, M.E., Ogawa, S. (2003): Non linear feedback effects by hedging strategies. To appear. · Zbl 1189.91211
[37] 37. Merton, R.C. (1973): Theory of rational option pricing. Bell Journal of Economics and Management Science 4, 141–183 · Zbl 1257.91043 · doi:10.2307/3003143
[38] 38. Miklavcic, M. (1989): Approximations for weakly nonlinear evolution equations. Mathematics of Computation 53, 471–484 · Zbl 0686.65058
[39] 39. Nochetto, R.H., Schmidt, A., Verdi, C. (1999): A posteriori error estimation and adaptivity for degenerate parabolic problems. Mathematics of Computation 69, 1–24 · Zbl 0942.65111 · doi:10.1090/S0025-5718-99-01097-2
[40] 40. Pironneau, O., Hecht, F. (2000): Mesh adaption for the Black and Scholes equations. East-West Journal of Numerical Mathematics 8, 25–35 · Zbl 0995.91026
[41] 41. Pooley, D.M., Forsyth, P.A., Vetzal, K.R. (2003): Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis 23, 241–267 · Zbl 1040.91053 · doi:10.1093/imanum/23.2.241
[42] 42. Quarteroni, A., Valli, A. (1994): Numerical approximation of partial differential equations. Springer, Berlin · Zbl 0803.65088
[43] 43. Raviart, P.-A., Thomas, J.-M. (1983): Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris
[44] 44. Rich, D. (1994): The mathematical foundations of barrier option-pricing theory. In.: Chance, D.M., Trippi, R. (eds.): Advances in futures and options research. Vol. 7, Jai Press, Greenwich, CT pp. 267–311
[45] 45. Ritchken, P. (1995): On pricing barrier options. The Journal of Derivatives 3(2), 19–28 · doi:10.3905/jod.1995.407939
[46] 46. Rulla, J., Walkington, N.J. (1996): Optimal rates of convergence for degenerate parabolic problems in two dimensions. SIAM Journal on Numerical Analisis 33, 56–67 · Zbl 0856.65102 · doi:10.1137/0733004
[47] 47. Sammon, P. (1982): Convergence estimates for semidiscrete parabolic equation approximations. SIAM Journal on Numerical Analisis 19, 68–92 · Zbl 0497.65056 · doi:10.1137/0719002
[48] 48. Sanfelici, S. (2001): Comparison of Numerical Methods for the Approximation of Option Price. WP 1/2001. Dipartimento di Economia, Università degli Studi di Parma, Parma
[49] 49. Shaposhnikova, T.O. (1975): A grid approximation to solutions of degenerate equations in a weighted space. Differentsialńye Uravneniya 11, 2261–2268. Translation: Differential Equations 11, 1680–1684
[50] 50. Tavella, D., Randall, C. (2000): Pricing financial instruments: the finite difference method. Wiley, New York
[51] 51. Thomée, V. (1997): Galerkin finite element methods for parabolic problems, Springer, Berlin · Zbl 0884.65097
[52] 52. Topper, J. (1998): Solving term structure models with finite elements. (Reihe Wirtschaftswissenschaften, 138), Tectum, Marburg
[53] 53. Wilmott, P., Dewynne, J.N., Howison, S. (1993): Option pricing: mathematical models and computation. Oxford Financial Press, Oxford · Zbl 0844.90011
[54] 54. Windcliff, H., Forsyth, P.A., Vetzal, K.R. (2004): Analysis of the stability of the linear boundary condition for the Black-Scholes equation. The Journal of Computational Finance. 8, 65–92
[55] 55. Zvan, R., Vetzal, K.R., Forsyth, P.A. (2000): PDE methods for pricing barrier options. Journal of Economic Dynamics and Control 24, 1563–1590 · Zbl 0967.91023 · doi:10.1016/S0165-1889(00)00002-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.