×

Existence and uniqueness of fixed points of an integral operator of Hammerstein type. (English. Russian original) Zbl 1490.45014

Theor. Math. Phys. 208, No. 3, 1228-1238 (2021); translation from Teor. Mat. Fiz. 208, No. 3, 440-451 (2021).
The author discusses the fixed points of a nonlinear integral operator of Hammerstein type. Here, such an operator is neither compact nor contracting. Therefore, some well-known theorems such as the Schauder fixed-point theorem and the Banach fixed-point theorem do not apply. The existence of fixed points of nonlinear integral operators of Hammerstein type has been established by other authors, and the author of the present paper establishes their uniqueness under certain conditions. Moreover, he applies the results to several interesting examples such as the antiferromagnetic and ferromagnetic Ising models.

MSC:

45P05 Integral operators
47H10 Fixed-point theorems
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Doležal, V., Monotone Operators and Applications in Control and Network Theory (1979), New York: Elsevier, New York · Zbl 0425.93002
[2] Richard, A. A.; Korvin, A. de; Tho, V. Van, Integration theory for Hammerstein operators, J. Math. Anal. Appl., 61, 72-96 (1977) · Zbl 0449.28012 · doi:10.1016/0022-247X(77)90144-5
[3] Cabada, A.; Cid, J. Á.; Infante, G., A positive fixed point theorem with applications to systems of Hammerstein integral equations, Bound. Value Probl., 2014 (2014) · Zbl 1339.47070 · doi:10.1186/s13661-014-0254-8
[4] Zeidler, E., Nonlinear Functional Analyses and Its Applications (1986), New York: Springer, New York · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
[5] Li, F.; Li, Y.; Liang, Z., Existence of solutions to nonlinear Hammerstein integral equations and applications, J. Math. Anal. Appl., 323, 209-227 (2006) · Zbl 1104.45003 · doi:10.1016/j.jmaa.2005.10.014
[6] Deng, W.-Q., An iterative solution to a system of nonlinear Hammerstein type equations and a system of generalized mixed equilibrium problems, J. Fixed Point Theor. Appl., 19, 2051-2068 (2017) · Zbl 1497.47093 · doi:10.1007/s11784-016-0389-6
[7] Guo, D.; Lakshmicantham, V., Nonlinear Problems in Abstract Cones (1988), New York: Academic Press, New York · Zbl 0661.47045
[8] Amann, H., On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11, 346-384 (1972) · Zbl 0244.47046 · doi:10.1016/0022-1236(72)90074-2
[9] Rozikov, U. A.; Khaidarov, F. Kh., Four competing interactions for models with an uncountable set of spin values on a Cayley tree, Theoret. and Math. Phys., 191, 910-923 (2017) · Zbl 1387.82015 · doi:10.1134/S0040577917060095
[10] Ruiz-Herrera, A., Permanence of two species and fixed point index, Nonlinear Anal., 74, 146-153 (2011) · Zbl 1218.37032 · doi:10.1016/j.na.2010.08.028
[11] Eshkabilov, Yu. Kh.; Haydarov, F. H.; Rozikov, U. A., Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree, Math. Phys. Anal. Geom., 16, 1-17 (2013) · Zbl 1277.82008 · doi:10.1007/s11040-012-9118-6
[12] Rozikov, U. A., Gibbs Measures on Cayley Trees (2013), Singapore: World Sci., Singapore · Zbl 1278.82002 · doi:10.1142/8841
[13] Haydarov, F. H., Fixed points of Lyapunov integral operators and Gibbs measures, Positivity, 22, 1165-1172 (2018) · Zbl 1400.82012 · doi:10.1007/s11117-018-0565-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.