×

Uniqueness of tangent cone of Kähler-Einstein metrics on singular varieties with crepant singularities. (English) Zbl 1539.53084

This paper is about proving the uniqueness of the local tangent cone for Kähler-Einstein metrics on polarized varieties with crepant singularities. The bulk of the paper focuses on the Calabi-Yau case, the canonically polarized case is sketched at the end.
The basic idea is very similar to S. Donaldson and S. Sun’s fundamental work [Acta Math. 213, No. 1, 63–106 (2014; Zbl 1318.53037); J. Differ. Geom. 107, No. 2, 327–371 (2017; Zbl 1388.53074)] on the local tangent cones for Gromov-Hausdorff limits of polarized Kähler-Einstein manifolds. One uses the Hörmander technique to produce many holomorphic sections, uses the \(3\)-circle type inequality to define a degree filtration on the local ring, and then the rigidity of the holomorphic spectrum to show the uniqueness of the tangent cone. The main difference with [{S. Donaldson} and {S. Sun}, loc. cit.] is that here the sequence of smooth metric approximations coming from the crepant resolution is not uniformly polarized by a line bundle. Instead the authors use the more technical variants of the Hörmander technique from [G. Liu and G. Székelyhidi, Geom. Funct. Anal. 32, No. 2, 236–279 (2022; Zbl 1493.53097)] to produce holomorphic sections directly on the singular variety itself, rather than on its crepant resolution.
In the case of non-zero Einstein constant, an extra difficulty is that the crepant resolution may not have a Kähler-Einstein metric, but only a Kähler metric with Ricci lower bound. Thus one cannot appeal to the Cheeger-Naber regularity theory for Einstein manifolds, and instead the authors appeal to the work from [G. Tian and B. Wang, J. Am. Math. Soc. 28, No. 4, 1169–1209 (2015; Zbl 1320.53052)] on almost Kähler-Einstein manifolds, which relies on some results about the Kähler-Ricci flow.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)
32Q20 Kähler-Einstein manifolds
32Q25 Calabi-Yau theory (complex-analytic aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] Anderson, M., T convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102, 2, 429-445 (1990) · Zbl 0711.53038 · doi:10.1007/BF01233434
[2] Cheeger, J.; Colding, TH, On the structure of space with Ricci curvature bounded below I, J. Differential. Geom., 46, 406-480 (1997) · Zbl 0902.53034 · doi:10.4310/jdg/1214459974
[3] Cheeger, J.; Colding, TH, On the structure of space with Ricci curvature bounded below II, J. Differ. Geom., 52, 13-35 (1999)
[4] Cheeger, J.; Colding, TH, On the structure of spaces with Ricci curvature bounded below. III, J. Differ. Geom., 54, 1, 37-74 (2000) · Zbl 1027.53043
[5] Cheeger, J.; Naber, A., Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. Math., 182, 3, 1093-1165 (2015) · Zbl 1335.53057 · doi:10.4007/annals.2015.182.3.5
[6] Cheeger, J.; Tian, G., On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math., 118, 3, 493-571 (1994) · Zbl 0814.53034 · doi:10.1007/BF01231543
[7] Cheeger, J.; Colding, TH; Tian, G., On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., 12, 873-914 (2002) · Zbl 1030.53046 · doi:10.1007/PL00012649
[8] Cheeger, J.; Jiang, WS; Naber, A., Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below, Ann. Math., 193, 2, 407-538 (2021) · Zbl 1469.53083 · doi:10.4007/annals.2021.193.2.2
[9] Chen, XX; Donaldson, SK; Sun, S., Kähler-Einstein metrics on Fano manifolds. II: limits with cone angle less than \(2\pi \), J. Am. Math. Soc., 28, 1, 199-234 (2015) · Zbl 1312.53097 · doi:10.1090/S0894-0347-2014-00800-6
[10] Cheng, SY; Yau, ST, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28, 3, 333-354 (1975) · Zbl 0312.53031 · doi:10.1002/cpa.3160280303
[11] Colding, TH, Ricci curvature and volume convergence, Ann. Math., 145, 3, 477-501 (1997) · Zbl 0879.53030 · doi:10.2307/2951841
[12] Colding, TH; Minicozzi, WP II, On uniqueness of tangent cones for Einstein manifolds, Invent. Math., 196, 3, 515-588 (2014) · Zbl 1302.53048 · doi:10.1007/s00222-013-0474-z
[13] Collins, T.C, Sebastien Picard, S., Yau, S-T.: Stability of the tangent bundle through conifold transitions, preprint arXiv:2102.11170
[14] Demailly, J.P.: Analytic methods in algebraic geometry, https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/analmeth.pdf. Accessed 14 Dec 2009
[15] Demailly, J.P.: Complex analytic and differential geometry. online book available at http://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf. Accessed 21 June 2012
[16] Donaldson, S.K., Sun, S.: Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, preprint arXiv:1206.2609
[17] Donaldson, SK; Sun, S., Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differ. Geom., 107, 2, 327-371 (2016) · Zbl 1388.53074
[18] Eyssidieux, P.; Guedj, V.; Zeriahi, A., Singular Kähler-Einstein metrics, J. Am. Math. Soc., 22, 607-639 (2009) · Zbl 1215.32017 · doi:10.1090/S0894-0347-09-00629-8
[19] Gauntlett, J.; Martelli, D.; Sparks, J.; Yau, S-T, Obstructions to the existence of Sasaki-Einstein metrics, Comm. Math. Phys., 273, 3, 803-827 (2007) · Zbl 1149.53026 · doi:10.1007/s00220-007-0213-7
[20] Jiang, WS; Naber, A., L2 curvature bounds on manifolds with bounded Ricci curvature, Ann. Math., 193, 1, 107-222 (2021) · Zbl 1461.53009 · doi:10.4007/annals.2021.193.1.2
[21] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem in Algebraic geometry, Sendai, 1985, 283-360, Adv. Stud. Pure Math., 10, NorthHolland, Amsterdam, (1987) · Zbl 0672.14006
[22] Li, C.; Xu, CY, Stability of valuations: higher rational rank, Peking Math. J., 1, 1, 1-79 (2018) · Zbl 1423.14262 · doi:10.1007/s42543-018-0001-7
[23] Li, C.; Wang, XW; Xu, CY, Algebraicity of the metric tangent cones and equivariant K-stability, J. Am. Math. Soc., 34, 4, 1175-1214 (2021) · Zbl 1475.14062 · doi:10.1090/jams/974
[24] Liu, G.; Szekelyhidi, G., Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below II, Comm. Pure Appl. Math., 74, 5, 909-931 (2021) · Zbl 1482.53052 · doi:10.1002/cpa.21900
[25] Liu, G.; Szekelyhidi, G., Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below I, Geom. Funct. Anal., 32, 236-279 (2022) · Zbl 1493.53097 · doi:10.1007/s00039-022-00594-8
[26] Martelli, D.; Sparks, J.; Yau, S-T, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys., 280, 611-673 (2007) · Zbl 1161.53029 · doi:10.1007/s00220-008-0479-4
[27] Perelman, G.: A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone, In: Comparison Geometry, Berkeley, CA, 1993-94. Math. Sci. Res. Inst. Publ., vol. 30, pp. 165-166. Cambridge University Press, Cambridge (1997) · Zbl 0887.53038
[28] Remmert, R., Local theory of complex spaces. Several complex variables. VII. Sheaf-theoretical methods in complex analysis. Encyclopaedia of mathematical sciences (1994), Springer-Verlag · Zbl 0793.00010
[29] Rong, X.; Zhang, Y., Continuity of extremal transitions and flops for Calabi-Yau manifolds, J. Differ. Geom., 82, 2, 233-269 (2011) · Zbl 1264.32021
[30] Ruan, W.; Zhang, Y., Convergence of Calabi-Yau manifolds, Adv. Math., 228, 3, 1543-1589 (2011) · Zbl 1232.32012 · doi:10.1016/j.aim.2011.06.023
[31] Simon, L.: Isolated singularities of extrema of geometric variational problems, Harmonic mappings and minimal immersions (Montecatini, 1984), 206-277, Lecture Notes in Math., 1161, Springer, Berlin, (1985) · Zbl 0583.49028
[32] Song, J.: Riemannian geometry of Kähler-Einstein currents, preprint, arxiv:1404.0445
[33] Song, J., On a conjecture of Candelas and de la Ossa, Comm. Math. Phys., 334, 2, 697-717 (2015) · Zbl 1318.32028 · doi:10.1007/s00220-014-2211-x
[34] Song, J.; Tian, G., Canonical measures and Kähler-Ricci flow, J. Am. Math. Soc., 25, 303-353 (2012) · Zbl 1239.53086 · doi:10.1090/S0894-0347-2011-00717-0
[35] Tian, G., On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., 101, 1, 101-172 (1990) · Zbl 0716.32019 · doi:10.1007/BF01231499
[36] Tian, G.; Wang, B., On the structure of almost Einstein manifolds, J. Am. Math. Soc., 28, 4, 1169-1209 (2015) · Zbl 1320.53052 · doi:10.1090/jams/834
[37] Tosatti, V., Limits of Calabi-Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc., 11, 744-776 (2009) · Zbl 1177.32015 · doi:10.4171/jems/165
[38] Tosatti, V., Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., 84, 2, 427-453 (2010) · Zbl 1208.32024 · doi:10.4310/jdg/1274707320
[39] Van Coevering, C., Examples of asymptotically conical Ricci-flat Kähler manifolds, Math. Z., 267, 1-2, 465-496 (2011) · Zbl 1211.53072 · doi:10.1007/s00209-009-0631-7
[40] Yau, ST, On the Ricci curvature of a compact Kähler manifold and complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31, 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[41] Zhang, Y.: Convergence of Kähler manifolds and calibrated fibrations, Ph.D. thesis, Nankai Institute of Mathematics, (2006)
[42] Zhang, Z.: On degenerate Monge-Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. Art.ID 63640, 18pp (2006) · Zbl 1112.32021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.