×

Slowdown estimates for one-dimensional random walks in random environment with holding times. (English) Zbl 1406.60136

Summary: We consider a one dimensional random walk in random environment that is uniformly biased to one direction. In addition to the transition probability, the jump rate of the random walk is assumed to be spatially inhomogeneous and random. We study the probability that the random walk travels slower than its typical speed and determine its decay rate asymptotic.

MSC:

60K37 Processes in random environments
60F10 Large deviations
60G50 Sums of independent random variables; random walks

References:

[1] S. W. Ahn and J. Peterson. Oscillations of quenched slowdown asymptotics for ballistic one-dimensional random walk in a random environment. Electron. J. Probab., 21(16):1-27, 2016. · Zbl 1336.60197 · doi:10.1214/16-EJP4529
[2] N. Berger. Slowdown estimates for ballistic random walk in random environment. J. Eur. Math. Soc. (JEMS), 14(1):127-174, 2012. · Zbl 1247.60138 · doi:10.4171/JEMS/298
[3] F. Comets, N. Gantert, and O. Zeitouni. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probability Theory and Related Fields, 118(1):65-114, 2000. · Zbl 0965.60098
[4] A. Dembo. Favorite points, cover times and fractals. In Lectures on probability theory and statistics, volume 1869 of Lecture Notes in Math., pages 1-101. Springer, Berlin, 2005. · Zbl 1102.60009
[5] A. Dembo, N. Gantert, and O. Zeitouni. Large deviations for random walk in random environment with holding times. Ann. Probab., 32(1B):996-1029, 2004. · Zbl 1126.60035
[6] A. Dembo, Y. Peres, and O. Zeitouni. Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys., 181(3):667-683, 1996. · Zbl 0868.60058
[7] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling extremal events, volume 33 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1997. For insurance and finance. · Zbl 0873.62116
[8] N. Gantert and O. Zeitouni. Quenched sub-exponential tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys., 194(1):177-190, 1998. · Zbl 0982.60037
[9] N. Gantert and O. Zeitouni. Large deviations for one-dimensional random walk in a random environment—a survey. In Random walks (Budapest, 1998), volume 9 of Bolyai Soc. Math. Stud., pages 127-165. János Bolyai Math. Soc., Budapest, 1999. · Zbl 0953.60009
[10] A. Greven and F. den Hollander. Large deviations for a random walk in random environment. Ann. Probab., 22(3):1381-1428, 1994. · Zbl 0820.60054
[11] S. V. Nagaev. Integral limit theorems taking large deviations into account when Cramér’s condition does not hold. i. Theory Probab. Appl., 14(1):51-64, 1969. · Zbl 0196.21002
[12] S. V. Nagaev. Integral limit theorems taking large deviations into account when Cramér’s condition does not hold. ii. Theory Probab. Appl., 14(2):193-208, 1969. · Zbl 0196.21003
[13] S. V. Nagaev. Large deviations of sums of independent random variables. Ann. Probab., 7(5):745-789, 1979. · Zbl 0418.60033 · doi:10.1214/aop/1176994938
[14] A. Pisztora and T. Povel. Large deviation principle for random walk in a quenched random environment in the low speed regime. Ann. Probab., 27(3):1389-1413, 1999. · Zbl 0964.60056 · doi:10.1214/aop/1022677453
[15] A. Pisztora, T. Povel, and O. Zeitouni. Precise large deviation estimates for a one-dimensional random walk in a random environment. Probab. Theory Related Fields, 113(2):191-219, 1999. · Zbl 0922.60059
[16] S. I. Resnick and R. J. Tomkins. Almost sure stability of maxima. J. Appl. Probability, 10:387-401, 1973. · Zbl 0258.60025 · doi:10.2307/3212355
[17] L. V. Rozovskiĭ. Probabilities of large deviations on the whole axis. Teor. Veroyatnost. i Primenen., 38(1):79-109, 1993. · Zbl 0801.60021
[18] E. Seneta. Regularly varying functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin, 1976. · Zbl 0324.26002
[19] F. Solomon. Random walks in a random environment. Ann. Probab., 3(1):1-31, 02 1975. · Zbl 0305.60029
[20] A.-S. Sznitman. Slowdown and neutral pockets for a random walk in random environment. Probab. Theory Related Fields, 115(3):287-323, 1999. · Zbl 0947.60095 · doi:10.1007/s004400050239
[21] A.-S. Sznitman. Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. (JEMS), 2(2):93-143, 2000. · Zbl 0976.60097 · doi:10.1007/s100970050001
[22] R. J. Tomkins. Regular variation and the stability of maxima. Ann. Probab., 14(3):984-995, 1986. · Zbl 0593.60042 · doi:10.1214/aop/1176992452
[23] R. van der Hofstad, P. Mörters, and N. Sidorova. Weak and almost sure limits for the parabolic Anderson model with heavy tailed potentials. Ann. Appl. Probab., 18(6):2450-2494, 2008. · Zbl 1204.60061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.