×

Design of 3D anisotropic Voronoi porous structure driven by stress field. (English) Zbl 1536.74185

Summary: Porous structures exhibit excellent mechanical properties and are widely utilized in engineering design. However, there is still substantial potential for enhancing the mechanical performance of these structure. By customizing the anisotropic design of each pore in the porous structure, the strength and stiffness of the structure can be significantly enhanced. In this work, we present a novel method for designing 3D anisotropic Voronoi porous structures (AVPSs). To construct these structures, we propose a novel algorithm for generating 3D anisotropic Voronoi diagrams (AVDs) based on Riemannian distance. The geometries of Voronoi cells are controlled to conform with both the stress distribution and the principal stress directions. The distribution of Voronoi cells are graded using a stress-based site sampling strategy, the orientation of Voronoi cells are modified by introducing stress-mapped Riemann tensor fields. The AVPSs are then modeled by computing implicit surfaces based on AVDs. The AVPSs conform closely to the geometric profile of the input model by clipping AVDs using the tetrahedral mesh. Furthermore, the results obtained from numerical simulations and experimental tests indicate that the AVPSs possess both high strength and high stiffness.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
68W20 Randomized algorithms
74L99 Special subfields of solid mechanics

Software:

TetGen
Full Text: DOI

References:

[1] Dudukovic, N. A.; Fong, E. J.; Gemeda, H. B.; DeOtte, J. R.; Cerón, M. R.; Moran, B. D.; Davis, J. T.; Baker, S. E.; Duoss, E. B., Cellular fluidics. Nature, 58-65 (2021)
[2] Yin, H.; Zhang, W.; Zhu, L.; Meng, F.; Liu, J.; Wen, G., Review on lattice structures for energy absorption properties. Compos. Struct. (2023)
[3] Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M., SLM lattice structures: properties, performance, applications and challenges. Mater. Des. (2019)
[4] Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A.; Kucheyev, S. O.; Fang, N. X.; Spadaccini, C. M., Ultralight, ultrastiff mechanical metamaterials. Science, 1373-1377 (2014)
[5] Fleck, N. A.; Deshpande, V. S.; Ashby, M. F., Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci., 2495-2516 (2010)
[6] Robbins, J.; Owen, S. J.; Clark, B. W.; Voth, T. E., An efficient and scalable approach for generating topologically optimized cellular structures for additive manufacturing. Addit. Manuf., 296-304 (2016)
[7] Jhou, S.-Y.; Hsu, C.-C.; Yeh, J.-C., The dynamic impact Response of 3D-printed polymeric sandwich structures with lattice cores: numerical and experimental investigation. Polymers, 4032 (2021)
[8] Novak, N.; Borovinšek, M.; Al-Ketan, O.; Ren, Z.; Vesenjak, M., Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures. Compos. Struct. (2022)
[9] Lei, H.-Y.; Li, J.-R.; Xu, Z.-J.; Wang, Q.-H., Parametric design of Voronoi-based lattice porous structures. Mater. Des. (2020)
[10] Feng, J.; Fu, J.; Lin, Z.; Shang, C.; Li, B., A review of the design methods of complex topology structures for 3D printing. Visual Comput. Ind. Biomed. Art, 5 (2018)
[11] Forés-Garriga, A.; Gómez-Gras, G.; Pérez, M. A., Additively manufactured three-dimensional lightweight cellular solids: experimental and numerical analysis. Mater. Des. (2023)
[12] Chen, Y.; Li, T.; Jia, Z.; Scarpa, F.; Yao, C.-W.; Wang, L., 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des., 226-234 (2018)
[13] Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y. M., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials, 127-141 (2016)
[14] Li, P.; Yang, F.; Bian, Y.; Zhang, S.; Wang, L., Designable mechanical properties of modified body-centered cubic lattice materials. Compos. Struct. (2023)
[15] Yao, Y.; Park, J. H.; Wang, L.; Geng, X.; Liu, J.; Xu, P.; Huang, H.; Hollister, S.; Fan, Y., Design, fabrication and mechanical properties of a 3D re-entrant metastructure. Compos. Struct. (2023)
[16] Fan, X.; Tang, Q.; Feng, Q.; Ma, S.; Song, J.; Jin, M.; Guo, F.; Jin, P., Design, mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting. Int. J. Mech. Sci. (2021)
[17] Nguyen, C. H.P.; Kim, Y.; Choi, Y., Design for additive manufacturing of functionally graded lattice structures: a design method with process induced anisotropy consideration. Int. J. Precis. Eng. Manuf. Green Technol., 29-45 (2021)
[18] Liu, X.; Gao, L.; Xiao, M.; Zhang, Y., Kriging-assisted design of functionally graded cellular structures with smoothly-varying lattice unit cells. Comput. Methods Appl. Mech. Eng. (2022) · Zbl 1507.74320
[19] Martínez, J.; Song, H.; Dumas, J.; Lefebvre, S., Orthotropic k-nearest foams for additive manufacturing. ACM Trans. Graph., 121 (2017), 1-121:12
[20] Wu, J.; Wang, W.; Gao, X., Design and optimization of conforming lattice structures. IEEE Trans. Vis. Comput. Graph., 43-56 (2021)
[21] Kumar, A.; Collini, L.; Daurel, A.; Jeng, J.-Y., Design and additive manufacturing of closed cells from supportless lattice structure. Addit. Manuf. (2020)
[22] Liu, Y.; Dong, Z.; Ge, J.; Lin, X.; Liang, J., Stiffness design of a multilayer arbitrary BCC lattice structure with face sheets. Compos. Struct. (2019)
[23] Yu, S.; Sun, J.; Bai, J., Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater. Des. (2019)
[24] Tian, L.; Lu, L.; Chen, W.; Xia, Y.; Wang, C. C.L.; Wang, W., Organic open-cell porous structure modeling, 1-12
[25] Tricard, T.; Tavernier, V.; Zanni, C.; Martínez, J.; Hugron, P.-A.; Neyret, F.; Lefebvre, S., Freely orientable microstructures for designing deformable 3D prints. ACM Trans. Graph., 211 (2020), 1-211:16
[26] Ha, N. S.; Lu, G., A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. (2020)
[27] du Plessis, A.; Broeckhoven, C.; Yadroitsava, I.; Yadroitsev, I.; Hands, C. H.; Kunju, R.; Bhate, D., Beautiful and functional: a review of biomimetic design in additive manufacturing. Addit. Manuf., 408-427 (2019)
[28] Liang, H.; Chao, L.; Xie, D.; Yang, Y.; Shi, J.; Zhang, Y.; Xue, B.; Shen, L.; Tian, Z.; Li, L.; Jiang, Q., Trabecular-like Ti-6Al-4V scaffold for bone repair: a diversified mechanical stimulation environment for bone regeneration. Compos. Part B Eng. (2022)
[29] Liu, B.; Chen, H.; Cao, W., A novel method for tailoring elasticity distributions of functionally graded porous materials. Int. J. Mech. Sci., 157-158, 457-470 (2019)
[30] Hooshmand-Ahoor, Z.; Tarantino, M. G.; Danas, K., Mechanically-grown morphogenesis of Voronoi-type materials: computer design, 3D-printing and experiments. Mech. Mater. (2022)
[31] Cao, B.; Yin, Y.; Zhao, X.; Qian, F., A novel drift eliminator enhanced by Voronoi-based porous foam applied to liquid desiccant system: separation performance and preliminary design. Build. Environ. (2022)
[32] Ray, N.; Sokolov, D.; Lefebvre, S.; Lévy, B., Meshless voronoi on the GPU. ACM Trans. Graph., 265 (2018), 1-265:12
[33] Martínez, J.; Dumas, J.; Lefebvre, S., Procedural voronoi foams for additive manufacturing. ACM Trans. Graph., 44 (2016), 1-44:12
[34] Cheng, H.; Liu, B.; Liu, M.; Cao, W., Design of three-dimensional Voronoi strut midsoles driven by plantar pressure distribution. J. Comput. Des. Eng., 1410-1429 (2022)
[35] van Nuland, T. F.W.; van Dommelen, J. A.W.; Geers, M. G.D., An anisotropic Voronoi algorithm for generating polycrystalline microstructures with preferred growth directions. Comput. Mater. Sci. (2021)
[36] Boissonnat, J.-D.; Rouxel-Labbé, M.; Wintraecken, M. H.M. J., Anisotropic triangulations via discrete Riemannian Voronoi diagrams. SIAM J. Comput., 1046-1097 (2019) · Zbl 1427.68331
[37] Liu, B.; Cheng, H.; Liu, M.; Cao, W.; Jiang, K., Adaptiveanisotropicporousstructuredesignandmodeling for 2.5D mechanical parts. Mater. Des. (2021)
[38] Ying, J.; Lu, L.; Tian, L.; Yan, X.; Chen, B., Anisotropic porous structure modeling for 3D printed objects. Comput. Graph., 157-164 (2018)
[39] van Nuland, T. F.W.; Belotti, L. P.; van Dommelen, J. A.W.; Geers, M. G.D., A novel 3D anisotropic Voronoi microstructure generator with an advanced spatial discretization scheme. Model. Simul. Mater. Sci. Eng. (2021)
[40] Beckmann, C.; Hohe, J., Generation of stochastic cellular structures with anisotropic cell characteristics on the basis of ellipsoid packings. Adv. Eng. Softw. (2022)
[41] Si, H., TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 11 (2015), 1-11:36 · Zbl 1369.65157
[42] Efraimidis, P. S.; Spirakis, P. G., Weighted random sampling with a reservoir. Inf. Process. Lett., 181-185 (2006) · Zbl 1184.68620
[43] Lorensen, W. E.; Cline, H. E., Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph., 163-169 (1987)
[44] Sanchez, M.; Fryazinov, O.; Fayolle, P.-A.; Pasko, A., Convolution filtering of continuous signed distance fields for polygonal meshes. Comput. Graph. Forum., 277-288 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.