×

Combination of discrete technique on graded meshes with barycentric rational interpolation for solving a class of time-dependent partial integro-differential equations with weakly singular kernels. (English) Zbl 1538.65619

Summary: In this paper, a combination of a time discrete technique on graded meshes with barycentric rational interpolation is employed to solve a class of one- and two-dimensional time-dependent partial integro-differential equations with weakly singular kernels. Equations of this type are also commonly called fractional evolution equations, whose solutions have some singular behaviours near the initial time. This makes that it’s difficult to reach an expected convergence result for the numerical treatment concerning time variable on uniform meshes. In the temporal direction, a generalized Crank-Nicolson difference scheme and the product integration formula on graded meshes are used to discretize the differential term and the integral term, respectively. Moreover, it’s proved that the time discrete scheme is unconditionally stable and quadratically convergent. Further, a fully discrete numerical approach is structured with spacial directional discretization in terms of barycentric rational interpolation. The results of numerical experiments display the efficiency of the method and confirm the theoretical analyses. In addition, the present scheme can reach second-order convergence in time both for smooth initial value and non-smooth initial value.

MSC:

65R20 Numerical methods for integral equations
65D05 Numerical interpolation
45K05 Integro-partial differential equations
35R11 Fractional partial differential equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Sil, S.; Sekhar, T. R.; Zeidan, D., Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation, Chaos Solitons Fractals, 139, Article 110010 pp. (2020) · Zbl 1490.35015
[2] Zeidan, D.; Chau, C. K.; Lu, T. T., On the characteristic Adomian decomposition method for the Riemann problem, Math. Methods Appl. Sci., 44, 8097-8112 (2021) · Zbl 1471.35007
[3] Izadi, M.; Zeidan, D., A convergent hybrid numerical scheme for a class of nonlinear diffusion equations, Comput. Appl. Math., 41, 318 (2022) · Zbl 1513.65408
[4] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York, USA · Zbl 0918.34010
[5] Alipour, M.; Rostamy, D.; Baleanu, D., Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices, J. Vib. Control, 19, 16, 2523-2540 (2013) · Zbl 1358.93097
[6] Bira, B.; Sekhar, T. R.; Zeidan, D., Exact solutions for some time-fractional evolution equations using Lie group theory, Math. Methods Appl. Sci., 41, 6717-6725 (2018) · Zbl 1516.35156
[7] Lischke, A.; Pang, G. F.; Gulian, M., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404, Article 109009 pp. (2020) · Zbl 1453.35179
[8] Bira, B.; Mandal, H.; Zeidan, D., Exact solution of the time fractional variant Boussinesq-Burgers equations, Appl. Math., 66, 437-449 (2021) · Zbl 1538.35420
[9] Sultana, F.; Singh, D.; Pandey, R. K.; Zeidan, D., Numerical schemes for a class of tempered fractional integro-differential equations, Appl. Numer. Math., 157, 110-134 (2020) · Zbl 1451.65242
[10] Kumar, S.; Zeidan, D., An efficient Mittag-Leffler kernel approach for time-fractional advection-reaction-diffusion equation, Appl. Numer. Math., 170, 190-207 (2021) · Zbl 1529.65101
[11] Atta, A. G.; Youssri, Y. H., Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel, Comput. Appl. Math., 41, 381 (2022) · Zbl 1513.65398
[12] Zheng, Z. Y.; Wang, Y. M., A second-order accurate Crank-Nicolson finite difference method on uniform meshes for nonlinear partial integro-differential equations with weakly singular kernels, Math. Comput. Simul., 205, 390-413 (2023) · Zbl 1540.65574
[13] López-Marcos, J. C., A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27, 1, 20-31 (1990) · Zbl 0693.65097
[14] Sanz-Serna, J. M., A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal., 25, 2, 319-327 (1988) · Zbl 0643.65098
[15] Miller, R. K., An integrodifferential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66, 313-332 (1978) · Zbl 0391.45012
[16] Fujita, Y., Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27, 309-321 (1990) · Zbl 0790.45009
[17] Li, L. M.; Xu, D., Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation, J. Comput. Phys., 236, 157-168 (2013) · Zbl 1286.65101
[18] Chen, H. B.; Xu, D.; Peng, Y. L., An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation, Int. J. Comput. Math., 92, 10, 2178-2197 (2015) · Zbl 1332.65187
[19] Ghehsareh, H. R.; Bateni, S. H.; Zaghian, A., A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation, Eng. Anal. Bound. Elem., 61, 52-60 (2015) · Zbl 1403.65088
[20] Shivanian, E.; Jafarabadi, A., An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation, J. Comput. Appl. Math., 325, 18-33 (2017) · Zbl 1417.65180
[21] Chen, H. B.; Xu, D.; Zhou, J., A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math., 356, 152-163 (2019) · Zbl 1524.65327
[22] Xu, D., Numerical solution of partial integro-differential equation with a weakly singular kernel based on Sinc methods, Math. Comput. Simul., 190, 140-158 (2021) · Zbl 1540.65439
[23] Qiao, L. J.; Tang, B.; Xu, D.; Qiu, W. L., High-order orthogonal spline collocation method with graded meshes for two-dimensional fractional evolution integro-differential equation, Int. J. Comput. Math., 99, 7, 1305-1324 (2022) · Zbl 1513.65416
[24] Tang, T., A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11, 4, 309-319 (1993) · Zbl 0768.65093
[25] Chen, H. B.; Xu, D.; Peng, Y. L., A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation, Appl. Math. Model., 41, 54-67 (2017) · Zbl 1443.65439
[26] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0899.65077
[27] Brunner, H., The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comput., 45, 172, 417-437 (1985) · Zbl 0584.65093
[28] Tang, T., Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations, Numer. Math., 61, 373-382 (1992) · Zbl 0741.65110
[29] Ma, J. T.; Jiang, Y. J., On a graded mesh method for a class of weakly singular Volterra integral equations, J. Comput. Appl. Math., 231, 807-814 (2009) · Zbl 1172.65071
[30] Majidian, H., Modified Euler’s method with a graded mesh for a class of Volterra integral equations with weakly singular kernel, Numer. Algorithms, 67, 405-422 (2014) · Zbl 1304.65272
[31] Sadiq, B.; Viswanath, D., Barycentric Hermite interpolation, SIAM J. Sci. Comput., 35, 3, A1254-A1270 (2013) · Zbl 1275.65010
[32] Elgindy, K. T., High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures, Appl. Numer. Math., 113, 1-25 (2017) · Zbl 1416.65230
[33] Berrut, J. P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 3, 501-517 (2004) · Zbl 1061.65006
[34] Higham, N. J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24, 547-556 (2004) · Zbl 1067.65016
[35] Mascarenhas, W. F., The stability of barycentric interpolation at the Chebyshev points of the second kind, Numer. Math., 128, 265-300 (2014) · Zbl 1305.65090
[36] Mascarenhas, W. F.; Camargo, A. P.D., On the backward stability of the second barycentric formula for interpolation, Dolomites Res. Notes. Approx., 7, 1-12 (2014)
[37] Austin, A. P.; Xu, K., On the numerical stability of the second barycentric formula for trigonometric interpolation in shifted equispaced points, IMA J. Numer. Anal., 37, 1355-1374 (2017) · Zbl 1433.65363
[38] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107, 315-331 (2007) · Zbl 1221.41002
[39] Camargo, A. P.D., On the numerical stability of Floater-Hormann’s rational interpolant, Numer. Algorithms, 72, 131-152 (2016) · Zbl 1382.65036
[40] Berrut, J. P.; Mittelmann, H. D., Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math., 78, 2, 355-370 (1997) · Zbl 0870.65006
[41] Abdi, A.; Berrut, J. P.; Hosseini, S. A., The linear barycentric rational method for a class of delay Volterra integro-differential equations, J. Sci. Comput., 75, 3, 1757-1775 (2018) · Zbl 1398.65345
[42] Li, M.; Huang, C. M., The linear barycentric rational quadrature method for auto-convolution Volterra integral equations, J. Sci. Comput., 78, 549-564 (2019) · Zbl 07042456
[43] Abdia, A.; Berrut, J. P.; Hosseinic, S. A., Explicit methods based on barycentric rational interpolants for solving non-stiff Volterra integral equations, Appl. Numer. Math., 174, 127-141 (2022) · Zbl 1483.65208
[44] Jiwari, R., Barycentric rational interpolation and local radial basis functions based numerical algorithms for multidimensional sine-Gordon equation, Numer. Methods Partial Differ. Equ., 37, 1965-1992 (2021) · Zbl 07776054
[45] Li, J.; Su, X. N.; Qu, J. Z., Linear barycentric rational collocation method for solving telegraph equation, Math. Methods Appl. Sci., 44, 11720-11737 (2021) · Zbl 1512.65021
[46] Oruç, Ö., Numerical simulation of two-dimensional and three-dimensional generalized Klein-Gordon-Zakharov equations with power law nonlinearity via a meshless collocation method based on barycentric rational interpolation, Numer. Methods Partial Differ. Equ., 38, 4, 1068-1089 (2022) · Zbl 1533.65197
[47] Garrappa, R., Trapezoidal methods for fractional differential equations: theoretical and computational aspects, Math. Comput. Simul., 110, 96-112 (2015) · Zbl 1540.65194
[48] Zhang, Y. N.; Sun, Z. Z.; Wu, H. W., Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49, 6, 2302-2322 (2011) · Zbl 1251.65132
[49] Berrut, J. P., Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl., 15, 1, 1-16 (1988) · Zbl 0646.65006
[50] Weideman, J. A.C.; Reddy, S. C., A Matlab differentiation matrix suite, ACM Trans. Math. Softw., 26, 4, 465-519 (2000)
[51] Berrut, J. P.; Floater, M. S.; Klein, G., Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math., 61, 989-1000 (2011) · Zbl 1222.41011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.