×

On pseudo-Mittag-Leffler functions and applications. (English) Zbl 1382.28026

Summary: The Mittag-Leffler function and related distribution are valuable in statistics, applied mathematics and lifetime data analysis. In this paper, we introduce the concept of pseudo-Mittag-Leffler functions. Then, we discuss the pseudo-fractional boundary value problems in two classes of pseudo-Caputo fractional derivative and pseudo-Riemann-Liouville fractional derivative to get the pseudo-integral inequalities of Lyapunov-type. Also, as an application, we obtain the nonexistence of real zeros of pseudo-Mittag-Leffler functions. Our results generalize the corresponding ones in the literature. Finally, two open problems for further investigations are given.

MSC:

28E99 Miscellaneous topics in measure theory
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Agahi, H.; Mesiar, R.; Ouyang, Y., Chebyshev type inequalities for pseudo-integrals, Nonlinear Anal., 72, 2737-2743 (2010) · Zbl 1195.28014
[2] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., Theory Methods Appl., 72, 2859-2862 (2010) · Zbl 1188.34005
[3] Alipour, M.; Rostamy, D.; Baleanu, D., Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices, J. Vib. Control, 19, 16, 2523-2540 (2013) · Zbl 1358.93097
[4] Bede, B.; O’ Regan, D., The theory of pseudo-linear operators, Knowl.-Based Syst., 38, 19-26 (2013)
[5] Ferreira, R. A.C., A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16, 4, 978-984 (2013) · Zbl 1312.34013
[6] Ferreira, R. A.C., On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412, 2, 1058-1063 (2014) · Zbl 1323.34006
[7] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier: Elsevier Amsterdam, The Netherlands · Zbl 1092.45003
[8] Kuich, W., Semirings, Automata, Languages (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0582.68002
[9] Laskin, N., Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul., 8, 201-203 (2003) · Zbl 1025.35029
[10] Lyapunov, A. M., Probleme général de la stabilité du mouvement, Ann. Fac. Sci. Univ. Toulouse. Ann. Fac. Sci. Univ. Toulouse, Ann. Math. Studies, vol. 17, 27-247 (1947), Princeton · Zbl 0031.18403
[11] (Maslov, V. P.; Samborskij, S. N., Idempotent Analysis. Idempotent Analysis, Advances in Soviet Mathematics, vol. 13 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, Rhode Island) · Zbl 0772.00015
[12] Mesiar, R.; Pap, E., Idempotent integral as limit of \(g\)-integrals, Fuzzy Sets Syst., 102, 385-392 (1999) · Zbl 0953.28010
[13] Mittag-Leffler, G. M., Sur l’intégrale de Laplace-Abel, C. R. Acad. Sci. Paris, Sér. II, 136, 937-939 (1902) · JFM 33.0408.01
[14] Pap, E., Applications of the generated pseudo-analysis on nonlinear partial differential equations, (Litvinov, G. L.; Maslov, V. P., Proceedings of the Conference on Idempotent Mathematics and Mathematical Physics. Proceedings of the Conference on Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics, vol. 377 (2005), American Mathematical Society), 239-259 · Zbl 1084.35004
[15] Pap, E., \(g\)-Calculus, Univ. u Novom Sadu, Zb. Rad. Prir.-Mat. Fak., Ser. Mat., 23, 1, 145-156 (1993) · Zbl 0823.28011
[16] Pap, E., Pseudo-additive measures and their applications, (Pap, E., Handbook of Measure Theory (2002), North-Holland, Elsevier: North-Holland, Elsevier Amsterdam), 1403-1468 · Zbl 1018.28010
[17] Pap, E., Pseudo-analysis as a mathematical base for soft computing, Soft Comput., 1, 61-68 (1997)
[18] Pap, E.; Ralević, N., Pseudo-Laplace transform, Nonlinear Anal., 33, 553-560 (1998)
[19] Pap, E.; Štrboja, M.; Rudas, I., Pseudo-\(L^p\) space and convergence, Fuzzy Sets Syst., 238, 113-128 (2014) · Zbl 1315.28014
[20] Pap, E.; Štrboja, M., Generalization of the Jensen inequality for pseudo-integral, Inf. Sci., 180, 543-548 (2010) · Zbl 1183.26039
[21] Pillai, R. N., On Mittag-Leffler functions and related distributions, Ann. Inst. Stat. Math., 42, 157-161 (1990) · Zbl 0714.60009
[22] Prakasa Rao, B. L.S., Filtered fractional Poisson processes, Stat. Methodol., 26, 124-134 (2015) · Zbl 1487.60087
[23] Prajapati, J. C.; Nathwani, B. V., Fractional calculus of a unified Mittag-Leffler function, Ukr. Math. J., 66, 8, 1267-1280 (2015) · Zbl 1353.47094
[24] Štrboja, M.; Grbić, T.; Štajner-Papuga, I.; Grujić, G.; Medić, S., Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions, Fuzzy Sets Syst., 222, 18-32 (2013) · Zbl 1284.28007
[25] Sugeno, M., Theory of Fuzzy Integrals and Its Applications (1974), Tokyo Institute of Technology, Ph.D. thesis
[26] Sugeno, M.; Murofushi, T., Pseudo-additive measures and integrals, J. Math. Anal. Appl., 122, 197-222 (1987) · Zbl 0611.28010
[27] Tomovski, Ž., Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator, Nonlinear Anal., 75, 3364-3384 (2012) · Zbl 1241.33020
[28] Wiman, A., Uber de Fundamental satz in der Theorie der Funktionen \(E_\alpha(x)\), Acta Math., 29, 191-201 (1905) · JFM 36.0471.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.