×

Inverse problem of determining the heat source density for the subdiffusion equation. (English. Russian original) Zbl 1471.35321

Differ. Equ. 56, No. 12, 1550-1563 (2020); translation from Differ. Uravn. 56, No. 12, 1596-1609 (2020).
The article is aimed to study the inverse problem of determining the right-hand side of a subdiffusion equation with Riemann-Liouville fractional derivative whose elliptic part has the most general form and is defined in an arbitrary multi-dimensional domain (with sufficiently smooth boundary). Namely, let \(\Omega \in \mathbb{R}^n\) be an arbitrary bouned domain with sufficiently smooth boundary \(\partial \Omega\), and let \(A(x,D)= \sum \limits_{|\alpha| < m} a_{\alpha}(x) D^{\alpha}\) be a positive formally self-adjoint elliptic differential operator of order \(m=2l\) with sufficiently smooth coefficients \(a_{\alpha}(x)\), \(\alpha = (\alpha_1, ..., \alpha_n)\) is a multiindex and \(D=(D_1, ..., D_n)\), \(D_i=\frac{\partial }{\partial x_i}\), \(0<p\leq 1\). Consider the subdiffusion equation \[ \partial^{p}_t u(x,t) + A(x, D) u(x,t)=f(x), \ \ x \in \Omega, \ \ 0<t \leq T.\] The direct initial-boundary value problem is to find the temperature distribution \(u(x,t)\) under the initial condition \[ \lim \limits_{t \to 0} \partial^{p-1}_t u(x,t) = \phi(x), \ \ x \in \overline{\omega}\] and the boundary conditions \[B_j u(x,t)= \sum \limits_{|\alpha| \leq m_j }b_{\alpha}(x) D^{\alpha}u(x,t)=0,\] \(0 \leq m_j \leq m-1\). The following inverse problem is considered: along with the solution \(u(x,t)\) to the initial-boundary value problem, find the heat source density \(f(x)\) such that the temperature distribution at time \(T\) achives a prescribed level, \(u(x,T)=\Phi(x)\) . The Fourier method is used to prove theorems on the existence and uniqueness of the classical solution of the initial-boundary value problem and on the unique reconstruction of the unknown right-hand side of the equation. The concept of the generalized solution is introduced and a theorem on its existence is proved. The stability of classical and generalized solutions is proved. Requirements for the initial function and for the additional condition are established under which the classical Fourier method can be applied to the inverse problem under consideration. The results obtained are also of interest for the classical diffusion equation.

MSC:

35R30 Inverse problems for PDEs
35D30 Weak solutions to PDEs
35R11 Fractional partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Umarov, S.; Hahn, M.; Kobayashi, K., Beyond the Triangle: Brownian Motion, Itô Calculus, and Fokker-Planck Equation—Fractional Generalizations (2017), Singapore: World Scientific, Singapore · Zbl 1403.60001
[2] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[3] Zhang, Y.; Benson, D. A.; Meerschaert, M. M.; LaBolle, E. M.; Scheffler, H. P., Random walk approximation of fractional-order multiscaling anomalous diffusion, Phys. Rev. E, 74, 1-10 (2006)
[4] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[5] Pskhu, A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka (Fractional Partial Differential Equations) (2005), Moscow: Nauka, Moscow
[6] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: North-Holland, Amsterdam · Zbl 1092.45003
[7] Uchaikin, V. V., Metod drobnykh proizvodnykh (Method of Fractional Derivatives) (2008), Ul’yanovsk: Artishok, Ul’yanovsk
[8] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogozin, S. V., Mittag-Leffler Functions, Related Topics and Applications (2014), Heidelberg-New York-Dordrecht-London: Springer, Heidelberg-New York-Dordrecht-London · Zbl 1309.33001
[9] Umarov, S., Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols (2015), Heidelberg-New York-Dordrecht-London: Springer, Heidelberg-New York-Dordrecht-London · Zbl 1331.35005
[10] Hilfer, R.; Luchko, Y.; Tomovski, Z., Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives, Fractional Calculus Appl. Anal., 12, 299-318 (2009) · Zbl 1182.26011
[11] Ashurov, R.; Cabada, A.; Turmetov, B., Operator method for construction of solutions of linear fractional differential equations with constant coefficients, Fractional Calculus Appl. Anal., 1, 229-252 (2016) · Zbl 1339.34006
[12] Zhang, Y.; Xu, X., Inverse source problem for fractional differential equations, Inverse Probl., 27, 3, 31-42 (2011)
[13] Furati, K. M.; Iyiola, O. S.; Kirane, M., An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249, 24-31 (2014) · Zbl 1338.35493
[14] Ismailov, M. I.; Cicek, M., Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions, Appl. Math. Model., 40, 4891-4899 (2016) · Zbl 1459.35395
[15] Kirane, M.; Malik, A. S., Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time, Appl. Math. Comput., 218, 163-170 (2011) · Zbl 1231.35289
[16] Kirane, M.; Samet, B.; Torebek, B. T., Determination of an unknown source term and the temperature distribution for the subdiffusion equation at the initial and final data, Electron. J. Differ. Equat., 217, 1-13 (2017) · Zbl 1375.35632
[17] Nguyen, H. T.; Le, D. L.; Nguyen, V. T., Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40, 8244-8264 (2016) · Zbl 1471.65124
[18] Torebek, B. T.; Tapdigoglu, R., Some inverse problems for the nonlocal heat equation with Caputo fractional derivative, Math. Methods Appl. Sci., 40, 6468-6479 (2017) · Zbl 1387.35625
[19] Heymans, N.; Podlubny, I., Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta, 45, 765-771 (2006) · doi:10.1007/s00397-005-0043-5
[20] Li, Z.; Liu, Y.; Yamamoto, M., Initial-boundary value problem for multi-term time-fractional diffusion equation with positive constant coefficients, Appl. Math. Comput., 257, 381-397 (2015) · Zbl 1338.35471
[21] Rundell, W.; Zhang, Z., Recovering an unknown source in a fractional diffusion problem, J. Comput. Phys., 368, 299-314 (2018) · Zbl 1392.35333
[22] Asl, N. A.; Rostamy, D., Identifying an unknown time-dependent boundary source in time-fractional diffusion equation with a non-local boundary condition, J. Comput. Appl. Math., 335, 36-50 (2019) · Zbl 1422.65238
[23] Sun, L.; Zhang, Y.; Wei, T., Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation, Appl. Numer. Math., 135, 228-245 (2019) · Zbl 1412.35383
[24] Malik, S. A.; Aziz, S., An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions, Comput. Math. Appl., 3, 7-19 (2017) · Zbl 1386.35479
[25] Ruzhansky, M.; Tokmagambetov, N.; Torebek, B. T., Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations, J. Inverse Ill-Posed Probl., 27, 891-911 (2019) · Zbl 1430.35272
[26] Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math., 15, 2, 119-143 (1962) · Zbl 0109.32701
[27] Krasnosel’skii, M. A.; Zabreiko, P. P.; Pustyl’nik, E. I.; Sobolevskii, P. S., Integral’nye operatory v prostranstvakh summiruemykh funktsii (Integral Operators in Spaces of Integrable Functions) (1966), Moscow: Nauka, Moscow · Zbl 0145.39703
[28] Alimov, Sh. A., Fractional degrees of elliptic operators and isomorphism of classes of differentiable functions, Differ. Uravn., 8, 9, 1609-1626 (1972) · Zbl 0256.35070
[29] Il’in, V. A., Fractional order kernels, Mat. Sb., 41, 4, 459-480 (1957) · Zbl 0078.28001
[30] Il’in, V. A., The solvability of mixed problems for hyperbolic and parabolic equations, Russ. Math. Surv., 15, 1, 85-142 (1960) · Zbl 0116.29802
[31] Sobolevskii, P. E., Estimates of Green’s function of second-order parabolic-type partial differential equations, Dokl. Akad. Nauk SSSR, 138, 2, 313-316 (1961) · Zbl 0102.09102
[32] Sobolevskii, P. E., On Green’s functions of any (including integer) degrees of elliptic operators, Dokl. Akad. Nauk SSSR, 142, 4, 97-154 (1961)
[33] Alimov, Sh. A.; Ashurov, R. R.; Pulatov, A. K., Multiple series and Fourier integrals, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya, 42, 7-104 (1989) · Zbl 0782.42012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.