×

Biorthogonal multiwavelets on the interval for solving multidimensional fractional optimal control problems with inequality constraint. (English) Zbl 1469.49031

Summary: This article proposes a new numerical approach for solving fractional optimal control problems including state and control inequality constraints using new biorthogonal multiwavelets. The properties of biorthogonal multiwavelets are first given. The Riemann-Liouville fractional integral operator for biorthogonal multiwavelets is utilized to reduce the solution of optimal control problems to a nonlinear programming one, to which existing, well-developed algorithms may be applied. In order to save the memory requirement and computation time, a threshold procedure is applied to obtain algebraic equations. The method is computationally very attractive and gives very accurate results.

MSC:

49M37 Numerical methods based on nonlinear programming
90C30 Nonlinear programming
Full Text: DOI

References:

[1] MaginRL. Fractional Calculus in Bioengineering. Redding, CA: Begell House Redding; 2006.
[2] MainardiF. Fractional Calculus and Waves in Linear Viscoelasticity. London: Imperial College Press; 2010. · Zbl 1210.26004
[3] PodlubnyI. Fractional Differential Equations. New York, NY: Academic Press; 1999.
[4] DehghanM, AbbaszadehM, MohebbiA. Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J Comput Appl Math. 2015;280:14‐36. · Zbl 1305.65211
[5] DehghanM, HamediEA, Khosravian‐ArabH. A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. J Vib Control. 2016;22(6):1547‐1559. · Zbl 1365.26005
[6] Khosravian‐ArabH, DehghanM, EslahchiMR. Fractional Sturm‐Liouville boundary value problems in unbounded domains: theory and applications. J Comput Phys. 2015;299:526‐560. · Zbl 1352.65202
[7] LakestaniM, DehghanM, Irandoust‐pakchinS. The construction of operational matrix of fractional derivatives using B‐spline functions. Commun Nonlinear Sci Numer Simul. 2012;17:1149‐1162. · Zbl 1276.65015
[8] LotfiA, YousefiSA. A numerical technique for solving a class of fractional variational problems. J Comput Appl Math. 2013;237:633‐643. · Zbl 1253.65105
[9] SaadatmandiA, DehghanM. A new operational matrix for solving fractional‐order differential equations. Comput Math Appl. 2010;59(3):1326‐1336. · Zbl 1189.65151
[10] DingY, WangZ, YeH. Optimal control of a fractional‐order HIV‐immune system with memory. Control Syst Technol IEEE Trans. 2012;20(3):763‐769.
[11] SweilamN, AL‐MekhlafiS. On the optimal control for fractional multistrain TB model. Optim Control Appl Methods. 2016;37(6):1355‐1374. · Zbl 1353.49029
[12] SweilamNH, Al‐MekhlafiSM. Legendre spectral‐collocation method for solving fractional optimal control of HIV infection of CD4^+T cells mathematical model. J Def Model Simul. 2017;14(3):273‐284.
[13] ZakyM, MachadoJT. On the formulation and numerical simulation of distributed‐order fractional optimal control problems. Commun Nonlinear Sci Numer Simul. 2017;52:177‐189. · Zbl 1510.49018
[14] AgrawalOP. General formulation for the numerical solution of optimal control problems. Int J Control. 1989;50:627‐638. · Zbl 0679.49031
[15] AgrawalOMP. A general finite element formulation for fractional variational problems. J Math Anal Appl. 2008;337:1‐12. · Zbl 1123.65059
[16] AgrawalOMP. Fractional variational calculus and transversality conditions. J Phys A Math Gen. 2006;39:10375‐10384. · Zbl 1097.49021
[17] AgrawalOMP, Mehedi HasanM, TangpongXW. A numerical scheme for a class of parametric problem of fractional variational calculus. J Comput Nonlinear Dyn. 2012;7:021005‐021001.
[18] AgrawalOMP. A general formulation and solution scheme for fractional optimal control problem. Nonlinear Dyn. 2004;38:323‐337. · Zbl 1121.70019
[19] AgrawalOMP. A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J Vib Control. 2007;13(9‐10):1269‐1281. · Zbl 1182.70047
[20] AgrawalOMP. A formulation and numerical scheme for fractional optimal control problems. J Vib Control. 2008;14:1291‐1299. · Zbl 1229.49045
[21] AgrawalOMP. A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Control. 2008;130(1):011010.
[22] YousefiSA, LotfiA, DehghanM. The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. J Vib Control. 2011;13:1‐7.
[23] LotfiA, YousefiSA, DehghanM. Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. Comput. Appl. Math. 2013;250:143‐160. · Zbl 1286.49030
[24] LotfiA, YousefiSA. Epsilon‐Ritz method for solving a class of fractional constrained optimization problems. J. Optim. Theory. Appl. 2014;163:884‐899. · Zbl 1386.49049
[25] BehroozifarM, HabibiN. A numerical approach for solving a class of fractional optimal control problems via operational matrix Bernoulli polynomials. J Vib Control. 2017;24(12):1‐18.
[26] KeshavarzE, OrdokhaniY, RazzaghiM. A numerical solution for fractional optimal control problems via Bernoulli polynomials. J Vib Control. 2015;22(18):1‐15.
[27] MashayekhiS, RazzaghiM. An approximate method for solving fractional optimal control problems by hybrid functions. J Vib Control. 2016;11:1621‐1631. · Zbl 1400.93122
[28] RabieiK, ParandK. Collocation method to solve inequality‐constrained optimal control problems of arbitrary order. Eng Comput. 2020;36:115‐125. https://doi.org/10.1007/s00366‐018‐0688‐1. · doi:10.1007/s00366‐018‐0688‐1
[29] BaleanuD, DefterliO, AgrawalOMP. A central difference numerical scheme for fractional optimal control problems. J Vib Control. 2009;15:547‐597. · Zbl 1272.49068
[30] ElnegarGA, KazemiMA. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput Optim Appl. 1998;1(2):195‐217. · Zbl 0914.93024
[31] LinQ, LoxtonR, TeoKL. The control parameterization method for nonlinear optimal control: a survey. J Ind Manag Optim. 2014;10(1):275‐309. · Zbl 1276.49025
[32] LinQ, LoxtonR, TeoKL. Optimal control of nonlinear switched systems: computational methods and applications. J Oper Res Soc China. 2013;1(3):275‐311. · Zbl 1277.49044
[33] TricaudC, ChenYQ. An approximation method for numerically solving fractional order optimal control problems of general form. Comput Math Appl. 2010;59:1644‐1655. · Zbl 1189.49045
[34] WangX, PengH, ZhangS, ChenB, ZhongW. A symplectic pseudospectra method for nonlinear optimal control problems with inequality constraints. ISA Trans. 2017;68:335‐352. https://doi.org/10.1016/j.isatra.2017.02.018. · doi:10.1016/j.isatra.2017.02.018
[35] DrefusSF. Variational problems with state variable inequality constraint. J. Math. Anal. Appl. 1962;4:291‐301.
[36] MehraRK, DavisRE. A generalized gradiant method for optimal control problems with inequality constraint and singular arcs. IEEE Trans Autom Control. 1972;17:69‐72. · Zbl 0268.49038
[37] KhalidA, HueyJ, SinghoseW, LawrenceJ, FrakesD. Human operator performance testing using an input‐shaped bridge crane. J Dyn Syst Meas Control. 2006;128(4):835‐841.
[38] TuanLA, LeeSG. Sliding mode controls of double‐pendulum crane systems. J Mech Sci Technol. 2013;27(6):1863‐1873.
[39] LiM, PengH. Solutions of nonlinear constrained optimal control problems using quasilinearization and variational pseudospectral methods. ISA Trans. 2016;62:177‐192.
[40] AlipourM, RostamyD, BaleanuD. Solving multi‐dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J Vib Control. 2013;19(16):2523‐2540. · Zbl 1358.93097
[41] MuP, WangL, LiuC. A control parameterization method to solve the fractional‐order optimal control problem. J Optim Theory Appl. 2017; In press. https://doi.org/10.1007/s1095. · doi:10.1007/s1095
[42] LotfiA, DehghanM, YousefiSA. A numerical technique for solving fractional optimal control problems. Comput Math Appl. 2011;62:1055‐1067. · Zbl 1228.65109
[43] OldhamKB, SpanierJ. The Fractional Calculus. New York, NY: Academic Press; 1974. · Zbl 0292.26011
[44] KilbasAA, SrivastavaHM, TrujilloJJ. Theory and Applications of Fractional Differential Equations, in North‐Holland Mathematics Studies. Vol 204. Amsterdam: Elsevier Science B.V; 2006. · Zbl 1092.45003
[45] HanB. Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J Approx Theory. 2001;110:18‐53. · Zbl 0986.42020
[46] HanB, MoQ. Multiwavelet frames from refinable function vectors. Adv Comput Math. 2003;18:211‐245. · Zbl 1059.42030
[47] AshpazzadehE, HanB, LakestaniM. Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation. J Comput Appl Math. 2017;317:510‐534. · Zbl 1357.65182
[48] LakestaniM, DehghanM. The solution of a second‐order nonlinear differential equation with Neumann boundary conditions using semi‐orthogonal B‐spline wavelets. Int J Comput Math. 2006;83(8‐9):685‐694. · Zbl 1114.65090
[49] AshpazzadehE, LakestaniM, RazzaghiM. Nonlinear constrained optimal control problems and cardinal Hermite interpolant multiscaling functions. Asian J Control. 2018;20(1):1‐10. · Zbl 1391.49060
[50] AvrileM. Nonlinear Programming: Analysis and Methods. Englewood Cliffs, NJ: Prentice‐Hall; 1976. · Zbl 0361.90035
[51] NelderJA, MeadRA. A simplex method for function minimization. Comput J. 1965;7(4):308‐313. · Zbl 0229.65053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.