×

Fast spectral collocation method for solving nonlinear time-delayed Burgers-type equations with positive power terms. (English) Zbl 1470.65173

Summary: Since the collocation method approximates ordinary differential equations, partial differential equations, and integral equations in physical space, it is very easy to implement and adapt to various problems, including variable coefficient and nonlinear differential equations. In this paper, we derive a Jacobi-Gauss-Lobatto collocation method (J-GL-C) to solve numerically nonlinear time-delayed Burgers-type equations. The proposed technique is implemented in two successive steps. In the first one, we apply \((N - 1)\) nodes of the Jacobi-Gauss-Lobatto quadrature which depend upon the two general parameters \((\theta, \vartheta > - 1)\), and the resulting equations together with the two-point boundary conditions constitute a system of \((N - 1)\) ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve a system of \((N - 1)\) ODEs of second order in time. We present numerical results which illustrate the accuracy and flexibility of these algorithms.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

Chebpack

References:

[1] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Fundamentals in Single Domains. Spectral Methods: Fundamentals in Single Domains, Scientific Computation, xxii+563 (2006), Berlin, Germany: Springer, Berlin, Germany · Zbl 1093.76002
[2] Gheorghiu, C. I., Spectral Methods for Differential Problems (2007), Cluj-Napoca, Romaina: T. Popoviciu Institute of Numerical Analysis, Cluj-Napoca, Romaina · Zbl 1122.65118
[3] Doha, E. H.; Bhrawy, A. H.; Hafez, R. M., On shifted Jacobi spectral method for high-order multi-point boundary value problems, Communications in Nonlinear Science and Numerical Simulation, 17, 10, 3802-3810 (2012) · Zbl 1251.65112 · doi:10.1016/j.cnsns.2012.02.027
[4] Doha, E. H.; Abd-Elhameed, W. M.; Bhrawy, A. H., New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collectanea Mathematica (2013) · Zbl 1281.65108 · doi:10.1007/s13348-012-0067-y
[5] Zhang, K.; Li, J.; Song, H., Collocation methods for nonlinear convolution Volterra integral equations with multiple proportional delays, Applied Mathematics and Computation, 218, 22, 10848-10860 (2012) · Zbl 1280.65148 · doi:10.1016/j.amc.2012.04.045
[6] Vanani, S. K.; Soleymani, F., Tau approximate solution of weakly singular Volterra integral equations, Mathematical and Computer Modelling, 57, 3-4, 494-502 (2013) · Zbl 1305.65247 · doi:10.1016/j.mcm.2012.07.004
[7] Zhu, L.; Fan, Q., Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Communications in Nonlinear Science and Numerical Simulation, 17, 6, 2333-2341 (2012) · Zbl 1335.45002 · doi:10.1016/j.cnsns.2011.10.014
[8] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Computers & Mathematics with Applications, 62, 5, 2364-2373 (2011) · Zbl 1231.65126 · doi:10.1016/j.camwa.2011.07.024
[9] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A new Jacobi operational matrix: an application for solving fractional differential equations, Applied Mathematical Modelling, 36, 10, 4931-4943 (2012) · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[10] Rostamy, D.; Karimi, K.; Gharacheh, L.; Khaksarfard, M., Spectral method for fractional quadratic Riccati differential equation, Journal of Applied Mathematics and Bioinformatics, 2, 85-97 (2012) · Zbl 1308.65132
[11] Bhrawy, A. H.; Alofi, A. S., A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 62-70 (2012) · Zbl 1244.65099 · doi:10.1016/j.cnsns.2011.04.025
[12] Bhrawy, A. H.; Alghamdi, M. A., A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals, Boundary Value Problems, 2012 (2012) · Zbl 1280.65079 · doi:10.1186/1687-2770-2012-62
[13] Maleknejad, K.; Attary, M., A Chebysheve collocation method for the solution of higher-order Fredholm-Volterra integro-differential equations system, Scientific Bulletin, Universitatea Politehnica din Bucuresti Series A, 74, 4, 17-28 (2012) · Zbl 1289.65291
[14] Maleki, M.; Hashim, I.; Kajani, M. T.; Abbasbandy, S., An adaptive pseudospectral method for fractional order boundary value problems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1261.34009 · doi:10.1155/2012/381708
[15] Szegő, G., Orthogonal Polynomials (1939), Colloquium Publications. XXIII. American Mathematical Society · JFM 65.0286.02
[16] Doha, E. H.; Bhrawy, A. H.; Hafez, R. M., A Jacobi dual-Petrov-Galerkin method for solving some odd-order ordinary differential equations, Abstract and Applied Analysis, 2011 (2011) · Zbl 1216.65086 · doi:10.1155/2011/947230
[17] Bhrawy, A. H.; Doha, E. H.; Hafez, R. M., A Jacobi dual-Petrov-Galerkin method for solving some odd-order ordinary differential equations, Abstract and Applied Analysis, 2011 (2011) · Zbl 1216.65086 · doi:10.1155/2011/947230
[18] Kim, H.; Sakthivel, R., Travelling wave solutions for time-delayed nonlinear evolution equations, Applied Mathematics Letters, 23, 5, 527-532 (2010) · Zbl 1189.35281 · doi:10.1016/j.aml.2010.01.005
[19] Dehghan, M.; Salehi, R., Solution of a nonlinear time-delay model in biology via semi-analytical approaches, Computer Physics Communications, 181, 7, 1255-1265 (2010) · Zbl 1219.65062 · doi:10.1016/j.cpc.2010.03.014
[20] Ghasemi, M.; Kajani, M. T., Numerical solution of time-varying delay systems by Chebyshev wavelets, Applied Mathematical Modelling, 35, 11, 5235-5244 (2011) · Zbl 1228.65105 · doi:10.1016/j.apm.2011.03.025
[21] Wang, X. T., Numerical solution of delay systems containing inverse time by hybrid functions, Applied Mathematics and Computation, 173, 1, 535-546 (2006) · Zbl 1090.65089 · doi:10.1016/j.amc.2005.04.056
[22] Wang, X. T., Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials, Applied Mathematics and Computation, 184, 2, 849-856 (2007) · Zbl 1114.65076 · doi:10.1016/j.amc.2006.06.075
[23] Wang, X. T., Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions, Journal of the Franklin Institute, 344, 7, 941-953 (2007) · Zbl 1120.49030 · doi:10.1016/j.jfranklin.2007.03.001
[24] Sedaghat, S.; Ordokhani, Y.; Dehghan, M., Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4815-4830 (2012) · Zbl 1266.65115 · doi:10.1016/j.cnsns.2012.05.009
[25] Tohidi, E.; Bhrawy, A. H.; Erfani, Kh., A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Applied Mathematical Modelling, 37, 4283-4294 (2013) · Zbl 1273.34082
[26] Ali, I.; Brunner, H.; Tang, T., Spectral methods for pantograph-type differential and integral equations with multiple delays, Frontiers of Mathematics in China, 4, 1, 49-61 (2009) · Zbl 1396.65107 · doi:10.1007/s11464-009-0010-z
[27] Trif, D., Direct operatorial tau method for pantograph-type equations, Applied Mathematics and Computation, 219, 4, 2194-2203 (2012) · Zbl 1298.34143 · doi:10.1016/j.amc.2012.08.065
[28] Sakthivel, R.; Chun, C.; Lee, J., New travelling wave solutions of burgers equation with finite transport memory, Zeitschrift fur Naturforschung A, 65, 8, 633-640 (2010)
[29] Sakthivel, R., Robust stabilization the Korteweg-de Vries-Burgers equation by boundary control, Nonlinear Dynamics, 58, 4, 739-744 (2009) · Zbl 1183.76660 · doi:10.1007/s11071-009-9514-z
[30] Pandey, K.; Verma, L.; Verma, A. K., Du Fort-Frankel finite difference scheme for Burgers equation, Arabian Journal of Mathematics, 2, 1, 91-101 (2013) · Zbl 1305.65217 · doi:10.1007/s40065-012-0050-1
[31] Sun, Z.-Z.; Wu, X.-N., A difference scheme for Burgers equation in an unbounded domain, Applied Mathematics and Computation, 209, 2, 285-304 (2009) · Zbl 1214.65047 · doi:10.1016/j.amc.2008.12.052
[32] Mittal, R. C.; Jiwari, R., A differential quadrature method for numerical solutions of Burgers-type equations, International Journal of Numerical Methods for Heat & Fluid Flow, 22, 6-7, 880-895 (2012) · Zbl 1357.65220 · doi:10.1108/09615531211255761
[33] Rostamy, D.; Karimi, K., Hypercomplex mathematics and HPM for the time-delayed Burgers equation with convergence analysis, Numerical Algorithms, 58, 1, 85-101 (2011) · Zbl 1227.65098 · doi:10.1007/s11075-011-9448-7
[34] Kudryavtsev, A. G.; Sapozhnikov, O. A., Determination of the exact solutions to the inhomogeneous burgers equation with the use of the darboux transformation, Acoustical Physics, 57, 3, 311-319 (2011) · doi:10.1134/S1063771011030080
[35] Caglar, H.; Ucar, M. F., Non-polynomial spline method for the solution of non-linear Burgers equation, Chaos and Complex Systems, 213-218 (2013)
[36] Wang, M.; Zhao, F., Haar Wavelet method for solving two-dimensional Burgers’ equation, Proceedings of the 2nd International Congress on Computer Applications and Computational Science, Advances in Intelligent and Soft Computing
[37] Zhang, J.; Wei, P.; Wang, M., The investigation into the exact solutions of the generalized time-delayed Burgers-Fisher equation with positive fractional power terms, Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, 36, 5, 2192-2196 (2012) · Zbl 1242.35197 · doi:10.1016/j.apm.2011.08.004
[38] Rendine, S.; Piazza, A.; Cavalli-Sforza, L. L., Simulation and separation by principle components of multiple demic expansions in Europe, The American Naturalist, 128, 681-706 (1986)
[39] Fahmy, E. S.; Abdusalam, H. A.; Raslan, K. R., On the solutions of the time-delayed Burgers equation, Nonlinear Analysis. Theory, Methods & Applications, 69, 12, 4775-4786 (2008) · Zbl 1165.35304 · doi:10.1016/j.na.2007.11.027
[40] Jawad, A. J. M.; Petković, M. D.; Biswas, A., Soliton solutions of Burgers equations and perturbed Burgers equation, Applied Mathematics and Computation, 216, 11, 3370-3377 (2010) · Zbl 1195.35262 · doi:10.1016/j.amc.2010.04.066
[41] Kim, H.; Sakthivel, R., Travelling wave solutions for time-delayed nonlinear evolution equations, Applied Mathematics Letters, 23, 5, 527-532 (2010) · Zbl 1189.35281 · doi:10.1016/j.aml.2010.01.005
[42] Doha, E. H.; Bhrawy, A. H., An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method, Computers & Mathematics with Applications, 64, 4, 558-571 (2012) · Zbl 1252.65194 · doi:10.1016/j.camwa.2011.12.050
[43] Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A., New algorithms for solving high evenorder differential equations using third and fourth Chebyshev-Galerkin methods, Journal of Computational Physics, 236, 563-579 (2013) · Zbl 1286.65093
[44] Doha, E. H.; Bhrawy, A. H., A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations, Numerical Methods for Partial Differential Equations, 25, 3, 712-739 (2009) · Zbl 1170.65099 · doi:10.1002/num.20369
[45] Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Ezz-Eldien, S. S., On shifted Jacobi spectral approximations for solving fractional differential equations, Applied Mathematics and Computation, 219, 15, 8042-8056 (2013) · Zbl 1291.65207 · doi:10.1016/j.amc.2013.01.051
[46] Naz, R.; Naeem, I.; Mahomed, F. M., First integrals for two linearly coupled nonlinear Duffing oscillators, Mathematical Problems in Engineering, 2011 (2011) · Zbl 1210.34055 · doi:10.1155/2011/831647
[47] Asadzadeh, M.; Rostamy, D.; Zabihi, F., Discontinuous Galerkin and multiscale variational schemes for a coupled damped nonlinear system of Schrodinger equations, Numerical Methods for Partial Differential Equations (2013) · Zbl 1307.65129 · doi:10.1002/num.21782
[48] Van Gorder, R. A.; Vajravelu, K., A general class of coupled nonlinear differential equations arising in self-similar solutions of convective heat transfer problems, Applied Mathematics and Computation, 217, 2, 460-465 (2010) · Zbl 1211.34037 · doi:10.1016/j.amc.2010.05.077
[49] Huang, M.; Zhou, Z., Standing wave solutions for the discrete coupled nonlinear Schrodinger equations with unbounded potentials, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.34146 · doi:10.1155/2013/842594
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.