×

Hopf and forward bifurcation of an integer and fractional-order SIR epidemic model with logistic growth of the susceptible individuals. (English) Zbl 1484.37102

Summary: This paper deals with the qualitative behavior of an integer and fractional-order SIR epidemic model with logistic growth of the susceptible individuals. Firstly, the positivity and boundedness of solutions for integer-order model are proved. The basic reproduction number \({\mathcal{R}}_0\) is driven and it is shown that the disease-free equilibrium is globally asymptotically stable if \({\mathcal{R}}_0<1\) in integer-order model. Using the methods of bifurcations theory, it is proved that the integer-order model exhibits forward bifurcation and Hopf bifurcation. Next, with the aim of the stability theory of fractional-order systems, some conditions, which can guarantee the local stability of the fractional-order model, are developed and occurrence of forward and Hopf bifurcations in this model are studied. Lastly, numerical simulations are illustrated to support the theoretical results and a comparison between the integer and fractional-order systems is presented.

MSC:

37N25 Dynamical systems in biology
26A33 Fractional derivatives and integrals
92D30 Epidemiology
92D25 Population dynamics (general)

Software:

MATCONT; XPPAUT
Full Text: DOI

References:

[1] Ahmed, E.; El-Sayed, A.; El-Saka, HAA, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys. Lett. A, 358, 1-4 (2006) · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[2] Aman, S.; Al-Mdallal, Q.; Khan, I., Heat transfer and second order slip effect on mhd flow of fractional maxwell fluid in a porous medium, J. King Saud Univ. Sci., 32, 1, 450-458 (2020) · doi:10.1016/j.jksus.2018.07.007
[3] Brauer, F.; Castillo-Chávez, C., Mathematical Models in Population Biology and Epidemiology (2001), Berlin: Springer, Berlin · Zbl 0967.92015
[4] Capasso, V.; Serio, G., A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42, 1-2, 43-61 (1978) · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[5] Caponetto, R., Fractional Order Systems: Modeling And Control Applications (2010), Singapore: World Scientific, Singapore
[6] Chena, Y.; Zouc, S.; Yang, J., Global analysis of an sir epidemic model with infection age and saturated incidence, Nonlinear Anal. Real World Appl., 30, 16-31 (2016) · Zbl 1365.92117 · doi:10.1016/j.nonrwa.2015.11.001
[7] Dhooge, A.; Govaerts, W.; Kuznetsov, YA, Matcont: a matlab package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29, 2, 141-164 (2003) · Zbl 1070.65574 · doi:10.1145/779359.779362
[8] El-Saka, HAA, Backward bifurcations in fractional-order vaccination models, J. Egypt. Math. Soc., 23, 49-55 (2015) · Zbl 1370.37150 · doi:10.1016/j.joems.2014.02.012
[9] El-Saka, HA; Ahmed, E.; Shehata, MI; El-Sayed, AMA, On stability, persistence, and Hopf bifurcation in fractional order dynamical systems, Nonlinear Dyn., 56, 1-2, 121 (2009) · Zbl 1175.37084 · doi:10.1007/s11071-008-9383-x
[10] El-Sayed, AMA, On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications, Alex J Math, 1, 1, 1-10 (2010)
[11] Ermentrout, B., Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (2002), New York: SIAM, New York · Zbl 1003.68738
[12] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002
[13] Hu, XL; Sun, FG; Wang, CX, Global analysis of sir epidemic model with the saturated contact rate and vertical transmission, Basic Sci. J. Textile Univ., 23, 120-122 (2010)
[14] Huang, Z.; Yang, Q.; Cao, J., Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise, Appl. Math. Model., 35, 5842-5855 (2011) · Zbl 1228.93086 · doi:10.1016/j.apm.2011.05.027
[15] Huo, J.; Zhao, H., Dynamical analysis of a fractional sir model with birth and death on heterogeneous complex networks, Phys. A Stat. Mech. Its Appl., 448, 41-56 (2016) · Zbl 1400.92492 · doi:10.1016/j.physa.2015.12.078
[16] Jana, S.; Kumar Nandi, S.; Kar, T. K., Complex dynamics of an sir epidemic model with saturated incidence rate and treatment, Acta Biotheor., 64, 65-84 (2016) · doi:10.1007/s10441-015-9273-9
[17] Li, J.; Teng, Z.; Wang, G.; Zhang, L.; Hu, C., Stability and bifurcation analysis of an sir epidemic model with logistic growth and saturated treatment, Chaos Solitons Fract., 99, 63-71 (2017) · Zbl 1373.92129 · doi:10.1016/j.chaos.2017.03.047
[18] Liu, W.; Hethcote, HW; Levin, SA, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biosci., 25, 359-380 (1987) · Zbl 0621.92014 · doi:10.1007/BF00277162
[19] Liu, W.; Levin, S.; Iwasa, YJ, Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models, J. Math. Biol., 23, 187-204 (1986) · Zbl 0582.92023 · doi:10.1007/BF00276956
[20] Matignon, D., Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2, 963-968 (1996)
[21] Mouaouine, A.; Boukhouima, A.; Hattaf, K.; Yousfi, N., A fractional order sir epidemic model with nonlinear incidence rate, Adv. Differ. Equ., 160, 1-9 (2018) · Zbl 1446.92233
[22] Perko, L., Rotated vector fields, J. Differ. Equ., 103, 1, 127-145 (1993) · Zbl 0781.34020 · doi:10.1006/jdeq.1993.1044
[23] Podlubny, I., Fractional Differential Equations (1999), London: Academic Press, London · Zbl 0918.34010
[24] Rostamy, D.; Mottaghi, E., Forward and backward bifurcation in a fractional-order sir epidemic model with vaccination, Iran. J. Sci. Technol. Trans. A Sci., 42, 2, 663-671 (2018) · Zbl 1397.92677 · doi:10.1007/s40995-018-0519-7
[25] Shan, C.; Zhu, H., Bifurcations and complex dynamics of an sir model with the impact of the number of hospital beds, J. Differ. Equ., 257, 5, 1662-1688 (2014) · Zbl 1300.34113 · doi:10.1016/j.jde.2014.05.030
[26] Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A., A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316, 504-515 (2018) · Zbl 1426.68015
[27] Tavazoei, MS; Haeri, M., A proof for non existence of periodic solutions in time invariant fractional order systems, Automatica, 45, 8, 1886-1890 (2009) · Zbl 1193.34006 · doi:10.1016/j.automatica.2009.04.001
[28] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of diseases transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[29] Wang, W.; Ruan, S., Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291, 775-793 (2004) · Zbl 1054.34071 · doi:10.1016/j.jmaa.2003.11.043
[30] Wang, Z.; Wang, X.; Li, Y.; Huang, X., Stability and hopf bifurcation of fractional-order complex-valued single neuron model with time delay, Int. J. Bifurc. Chaos, 27, 13, 1750209 (2017) · Zbl 1378.92012 · doi:10.1142/S0218127417502091
[31] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003), Berlin: Springer, Berlin · Zbl 1027.37002
[32] Zhang, X.; Liu, X., Backward bifurcation of an epidemic model with saturated treatment, J. Math. Anal. Appl., 348, 433-443 (2008) · Zbl 1144.92038 · doi:10.1016/j.jmaa.2008.07.042
[33] Zhou, L.; Fan, M., Dynamics of an sir epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13, 1, 312-324 (2012) · Zbl 1238.37041 · doi:10.1016/j.nonrwa.2011.07.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.