×

Construction of constant mean curvature \(n\)-noids using the DPW method. (English) Zbl 1508.53016

Summary: We construct constant mean curvature surfaces in euclidean space with genus zero and \(n\) ends asymptotic to Delaunay surfaces using the DPW method.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53A05 Surfaces in Euclidean and related spaces
22E67 Loop groups and related constructions, group-theoretic treatment

References:

[1] S. B. Chae, Holomorphy and calculus in normed spaces, Monogr. Textb. Pure Appl. Math. 92, Marcel Dekker, New York 1985. · Zbl 0571.46031
[2] J. Dorfmeister and G. Haak, On constant mean curvature surfaces with periodic metric, Pacific J. Math. 182 (1998), no. 2, 229-287. · Zbl 0906.53005
[3] J. Dorfmeister, F. Pedit and H. Wu, Weierstrass-type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), no. 4, 633-668. · Zbl 0932.58018
[4] J. Dorfmeister and H. Wu, Construction of constant mean curvature n-noids from holomorphic potentials, Math. Z. 258 (2008), no. 4, 773-803. · Zbl 1151.53055
[5] O. Forster, Lectures on Riemann surfaces, Grad. Texts in Math. 81, Springer, New York 1981. · Zbl 0475.30002
[6] S. Fujimori, S. Kobayashi and W. Rossman, Loop group methods for constant mean curvature surfaces, preprint (2006), https://arxiv.org/abs/math/0602570.
[7] A. Gerding, F. Pedit and N. Schmitt, Constant mean curvature surfaces: An integrable systems perspective, Harmonic maps and differential geometry, Contemp. Math. 542, American Mathematical Society, Providence (2011), 7-39. · Zbl 1223.53046
[8] K. Grosse Brauckmann, R. B. Kusner and J. M. Sullivan, Triunduloids: Embedded constant mean curvature surfaces with three ends and genus zero, J. reine angew. Math. 564 (2003), 35-61. · Zbl 1058.53005
[9] K. Grosse-Brauckmann, R. B. Kusner and J. M. Sullivan, Coplanar constant mean curvature surfaces, Comm. Anal. Geom. 15 (2007), no. 5, 985-1023. · Zbl 1145.53002
[10] L. Heller, S. Heller and N. Schmitt, Navigating the space of symmetric CMC surfaces, J. Differential Geom. 110 (2018), no. 3, 413-455. · Zbl 1403.53051
[11] S. Heller, Higher genus minimal surfaces in \(S^3\) and stable bundles, J. reine angew. Math. 685 (2013), 105-122. · Zbl 1288.53007
[12] S. Heller, Lawson’s genus two surface and meromorphic connections, Math. Z. 274 (2013), no. 3-4, 745-760. · Zbl 1275.53012
[13] S. Heller, A spectral curve approach to Lawson symmetric CMC surfaces of genus 2, Math. Ann. 360 (2014), no. 3-4, 607-652. · Zbl 1321.53012
[14] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131 (1990), no. 2, 239-330. · Zbl 0699.53007
[15] M. Kilian, S.-P. Kobayashi, W. Rossman and N. Schmitt, Constant mean curvature surfaces of any positive genus, J. Lond. Math. Soc. (2) 72 (2005), no. 1, 258-272. · Zbl 1082.53008
[16] M. Kilian, I. McIntosh and N. Schmitt, New constant mean curvature surfaces, Exp. Math. 9 (2000), no. 4, 595-611. · Zbl 1017.53009
[17] M. Kilian, W. Rossman and N. Schmitt, Delaunay ends of constant mean curvature surfaces, Compos. Math. 144 (2008), no. 1, 186-220. · Zbl 1144.53015
[18] N. J. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465-503. · Zbl 0726.53007
[19] T. Raujouan, On Delaunay ends in the DPW method, preprint (2017), https://arxiv.org/abs/1710.00768. · Zbl 1460.53009
[20] N. Schmitt, Constant mean curvature n-noids with platonic symmetries, preprint (2007), https://arxiv.org/abs/math/0702469.
[21] N. Schmitt, M. Kilian, S.-P. Kobayashi and W. Rossman, Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 563-581. · Zbl 1144.53017
[22] M. E. Taylor, Introduction to differential equations, Pure Appl. Undergrad. Texts 14, American Mathematical Society, Providence 2011. · Zbl 1236.34001
[23] M. Traizet, Opening nodes on horosphere packings, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5701-5725. · Zbl 1336.53071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.