×

Co-volume methods for degenerate parabolic problems. (English) Zbl 0797.65075

A completely volume (co-volume) technique is used for developing a physically appealing algorithm for the solution of degenerate parabolic problems such as for example a Stefan problem which models heat conduction in a material which may undergo a change in phase. In each of phases, the balance of energy reduces to the classical heat conduction problem, \(de/dt - k_ i \Delta u = f\) in \(\Omega_ i\), where \(e\) is the energy, \(u\) the temperature and \(k_ i\) the conductivity in phase \(i\) which currently occupies a region \(\Omega_ i \subset \Omega\). In each phase, \(u\) is typically an affine function of the energy \(e\) with the slope \(c_ i\), the specific heat of the \(i\)th phase; however, any monotone function of \(e\) may be accomodated.
It is shown that the suggested algorithms give rise to a discrete semigroup theory that parallels the continuous problem. In particular, the discrete Stefan problem gives rise to a nonlinear semigroup in both the discrete \(L^ 1\) and \(H^{-1}\) spaces.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
80A22 Stefan problems, phase changes, etc.
35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
20M99 Semigroups

References:

[1] Atthey, D.R. (1974): A finite difference scheme for melting problems. J. Inst. Math. Appl.13, 353-366
[2] Benilan, P., Crandall, M.G., Sacks, P. (1988): SomeL 1 existence and dependence results for semilinear elliptic equation under nonlinear boundary conditions. Appl. Math. Optimization17, 203-224 · Zbl 0652.35043 · doi:10.1007/BF01448367
[3] Berger, A.E., Brezis, H., Rogers, C.W. (1979): A numerical method for solving the problemu t ??f(u)=0. RAIRO Numer. Anal.13, 297-312
[4] Bo?rgers, C., Peskin, C. (1985): A Lagrangian method based on the Voronoi diagram for the incompressible Navier Stokes equation on a periodic domain. Proc. Int. Conf. Free Lagrange Methods. In: M. J. Fritts et al., eds., Lecture Notes in Physics, Vol. 238. Springer, Berlin Heidelberg New York
[5] Brezis, H., Pazy, A. (1972): Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal.9, 63-74 · Zbl 0231.47036 · doi:10.1016/0022-1236(72)90014-6
[6] Caffarelli, L.A., Friedman, A. (1979): Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J.28, 53-70 · Zbl 0406.35032 · doi:10.1512/iumj.1979.28.28004
[7] Ciarlet, P.G., Raviart, P.A. (1987): Maximum principle and uniform convergence for the finite element method. Comput. Meth. Appl. Mech. Eng.2, 17-31 · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[8] Crandall, M. (1976): An introduction to evolution governed by accretive operators. Dynamical systems, Vol. 1. An International Symposium, Academic Press, New York London · Zbl 0339.35049
[9] Epperson, J.F. (1984): Finite element methods for a class of nonlinear evolution equations, SIAM J. Numer. Anal.21, 1066-1079 · Zbl 0579.65116 · doi:10.1137/0721066
[10] Jerome, J.W., Rose, M.E. (1982): Error estimates for the multidimensional two-phase Stefan problem. Math. Comput.39, 377-414 · Zbl 0505.65060 · doi:10.1090/S0025-5718-1982-0669635-2
[11] Kelley, C.T., Rulla, J. (1990): Solution of the time discretized Stefan problem by Newton’s method. J. Nonlin. Anal. TMA14, 851-872 · Zbl 0709.65107 · doi:10.1016/0362-546X(90)90025-C
[12] Kinderlehrer, D., Stampacchia, G. (1980): An Introduction to Variational Inequalities and their Applications. Academic Press, New York London · Zbl 0457.35001
[13] Macneal, R.H. (1953): An asymmetrical finite difference network. Quart. Appl. Math.11, 295-310 · Zbl 0053.26304
[14] Magenes, E., Nochetto, R.H., Verdi, C. (1987): Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Model. Math. Anal. Numer.23, 655-678 · Zbl 0635.65123
[15] Magenes, E., Verdi, C., Visintin, A. (1989): Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal.26, 1425-1438 · Zbl 0738.65092 · doi:10.1137/0726083
[16] Nicolaides, R.A. (1989): Direct discretization of planar div-curl problems. NASA ICASE Report No. 89-76
[17] Nicolaides, R.A., Wu, X. (1991): Co-volume solutions of three dimensional div-curl equations. Preprint
[18] Nochetto, R.H. (1987): Error estimates for multidimensional singular parabolic problems. Japan J. Appl. Math.4, 111-138 · Zbl 0657.65132 · doi:10.1007/BF03167758
[19] Nochetto, R.H., Verdi, C. (1988): Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal.25, 784-814 · Zbl 0655.65131 · doi:10.1137/0725046
[20] Rogers, J.C.W., Beger, A.E., Ciment, M. (1979): The alternating phase truncation method for numerical solution of a Stefan problem. SIAM J. Numer. Anal.16, 563-587 · Zbl 0418.65051 · doi:10.1137/0716043
[21] Rose, M. (1960): A method for calculating solutions of parabolic equations with a free boundary. Math. Comput.14, 249-256 · Zbl 0096.10102 · doi:10.1090/S0025-5718-1960-0115283-8
[22] Rulla, J. (1991): Error analyses for implicit approximations to solutions to Cauchy problems. Preprint · Zbl 0855.65102
[23] Thomee, V. (1984): Galerkin finite element methods for parabolic problems, Vol. 1054. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York · Zbl 0528.65052
[24] White, R.E. (1982): An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal.19, 1129-1157 · Zbl 0501.65058 · doi:10.1137/0719082
[25] Zlamal M. (1980): A finite element solution of the nonlinear heat equation. RAIRO, Numer. Anal.14, 203-216 · Zbl 0442.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.