×

Virtual element method for the quasilinear convection-diffusion-reaction equation on polygonal meshes. (English) Zbl 1501.65102

Summary: In this paper, we analyze the virtual element method for the quasilinear convection-diffusion-reaction equation. The most important part in the analysis is the proof of existence and uniqueness of the branch of solution of the discrete problem. We extend the explicit analysis given by G. Lube [Numer. Math. 61, No. 3, 335–357 (1992; Zbl 0759.65076)] for the finite element discretization to virtual element framework. We prove the optimal rate of convergence in the energy norm. In order to reduce the overall computational cost incurred for the nonlinear equations, we have performed the numerical experiments using a two-grid method. We validate the theoretical estimates with the computed numerical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Citations:

Zbl 0759.65076

Software:

PolyMesher
Full Text: DOI

References:

[1] Helmig, R., Multiphase Flows and Transport Processes in the Subsurface (1997), Berlin: Springer, Berlin · doi:10.1007/978-3-642-60763-9
[2] Brooks, AN; TJR, Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech Eng., 32, 1-3, 199-259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[3] Burman, E., Consistent SUPG method for transient transport problems, Comput. Methods Appl. Mech. Eng., 199, 17-20, 1114-1123 (2010) · Zbl 1227.76047 · doi:10.1016/j.cma.2009.11.023
[4] Braack, M.; Burman, E., Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal., 43, 2544-2566 (2006) · Zbl 1109.35086 · doi:10.1137/050631227
[5] Matthies, G.; Skrzypacz, P.; Tobiska, L., A unified convergence analysis for local projection stabilisations applied to the Oseen problem, ESAIM. Math. Model. Numer Anal., 41, 713-742 (2007) · Zbl 1188.76226 · doi:10.1051/m2an:2007038
[6] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech Eng., 193, 1437-1453 (2004) · Zbl 1085.76033 · doi:10.1016/j.cma.2003.12.032
[7] Zhang, T., The semidiscrete finite volume element method for nonlinear convection-diffusion problem, Appl. Math. Comput., 217, 7546-7556 (2011) · Zbl 1221.65234
[8] Frutos, JD; Novo, J., Bubble stabilization of linear finite element methods for nonlinear evolutionary convection-diffusion equations, Comput. Methods Appl. Mech Eng., 197, 3988-3999 (2008) · Zbl 1194.76148 · doi:10.1016/j.cma.2008.03.028
[9] Yucel, H.; Stoll, M.; Benner, P., Discontinuous G,alerkin finite element methods with shock-capturing for nonlinear convection dominated models, Comput. Chem Eng., 58, 278-287 (2013) · doi:10.1016/j.compchemeng.2013.07.011
[10] Duan, HY; Hsieh, PW; Tan, RCE; Yang, SY, Analysis of a new stabilized finite element method for the reaction-convection-diffusion equations with a large reaction coefficient, Comput. Methods Appl. Mech Eng., 247-248, 15-36 (2012) · Zbl 1352.65340 · doi:10.1016/j.cma.2012.07.018
[11] Beirao Da Veiga, L.; Lipnikov, P.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems, vol. 11 (2014), Modeling, Simulations and Applications: Springer, Modeling, Simulations and Applications · Zbl 1286.65141
[12] Beirao Da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math Models Methods Appl Sci, 23, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[13] Beirao Da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., The hitchikkers guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 1541-1574 (2014) · Zbl 1291.65336 · doi:10.1142/S021820251440003X
[14] Beirao Da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech Eng., 295, 327-346 (2015) · Zbl 1423.74120 · doi:10.1016/j.cma.2015.07.013
[15] Beirao Da Veiga, L.; Brezzi, F.; Marini, LD, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 794-812 (2013) · Zbl 1268.74010 · doi:10.1137/120874746
[16] Gain, AL; Talischi, C.; Paulino, GH, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Eng., 282, 132-160 (2014) · Zbl 1423.74095 · doi:10.1016/j.cma.2014.05.005
[17] Adak, D.; Natarajan, E.; Kumar, S., Virtual element method for semilinear hyperbolic problems on polygonal meshes, Int. J Comput. Math., 96, 5, 971-991 (2019) · Zbl 1499.65478 · doi:10.1080/00207160.2018.1475651
[18] Adak, D.; Natarajan, S.; Natarajan, E., Virtual element method for semilinear elliptic problems on polygonal meshes, Appl. Numer Math., 145, 175-187 (2019) · Zbl 1433.65271 · doi:10.1016/j.apnum.2019.05.021
[19] Adak, D.; Natarajan, E.; Kumar, S., Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer Methods Partial Differ Equ., 35, 1, 222-245 (2019) · Zbl 1419.65040 · doi:10.1002/num.22298
[20] Antonietti, PF; Beirao Da Veiga, L.; Mora, D.; Verani, M., A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer Anal., 52, 1, 386-404 (2014) · Zbl 1427.76198 · doi:10.1137/13091141X
[21] Liu, X.; Chen, Z., The nonconforming virtual element method for the Navier-Stokes equations, Adv. Comput. Math., 45, 1, 51-74 (2019) · Zbl 1419.65117 · doi:10.1007/s10444-018-9602-z
[22] Benedetto, MF; Berrone, S.; Borio, A.; Pieraccini, S.; Scialo, S., Order preserving SUPG, stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech Eng., 311, 18-40 (2016) · Zbl 1439.76051 · doi:10.1016/j.cma.2016.07.043
[23] Beirao Da Veiga, L.; Dassi, F.; Lovadina, C.; Vacca, G., SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis, ESAIM: M2AN, 55, 5, 2233-2258 (2021) · Zbl 1490.65267 · doi:10.1051/m2an/2021050
[24] Cangiani, A., Manzini, G., Sutton, O.J.: The Conforming Virtual Element Method for the Convection-Diffusion-Reaction Equation with Variable Coefficients. Techical Report, Los Alamos National Laboratory, page http://www.osti.gov/scitech/servlets/purl/1159207 (2014)
[25] Li, Y.; Feng, M., A local projection stabilization virtual element method for convection-diffusion-reaction equation, Appl. Math Comp., 126536, 411 (2021) · Zbl 1510.76090
[26] Arrutselvi, M.; Natarajan, E., Virtual element method for nonlinear convection-diffusion-reaction equation on polygonal meshes, Int. J Comput. Math, 98, 9, 1852-1876 (2021) · Zbl 1480.65327 · doi:10.1080/00207160.2020.1849637
[27] Arrutselvi, M.; Natarajan, E., Virtual element stabilization of convection-diffusion equation with shock capturing, Journal of Physics Conf. Ser., 1850, 1-12 (2021) · Zbl 1480.65327 · doi:10.1088/1742-6596/1850/1/012001
[28] Arrutselvi, M., Natarajan, E.: Virtual element method for the system of time dependent nonlinear convection-diffusion-reaction equation. arXiv:2109.10124[math.NA], September 2021 (2021)
[29] Lube, G., Streamline diffusion finite element method for quasilinear elliptic problems, Numer. Math., 61, 335-357 (1992) · Zbl 0759.65076 · doi:10.1007/BF01385513
[30] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithm. Springer-verlag Berlin Heidelberg NewYork Tokoyo (1986) · Zbl 0585.65077
[31] Beirao Da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., Virtual element method for general second-order elliptic problems, Math Models Methods Appl Sci., 26, 4, 729-750 (2016) · Zbl 1332.65162 · doi:10.1142/S0218202516500160
[32] Brenner, SC; Guan, Q.; Sung, LY, Some estimates for virtual element methods, Comput. Methods Appl Math., 17, 4, 553-574 (2017) · Zbl 1434.65237 · doi:10.1515/cmam-2017-0008
[33] Brezzi, F.; Rappaz, J.; Raviart, PA, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math, 36, 1-25 (1980) · Zbl 0488.65021 · doi:10.1007/BF01395985
[34] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, LD; Russo, A., Equivalent projectors for virtual element methods, Comput. Math Appl., 66, 376-391 (2013) · Zbl 1347.65172 · doi:10.1016/j.camwa.2013.05.015
[35] John, V.; Schmeyer, E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech Eng., 198, 3, 475-494 (2008) · Zbl 1228.76088 · doi:10.1016/j.cma.2008.08.016
[36] Cangiani, A.; Georgoulis, EH; Pryer, T.; Sutton, OJ, A posteriori error estimates for the virtual element method, Numer Math., 137, 857-892 (2018) · Zbl 1384.65079 · doi:10.1007/s00211-017-0891-9
[37] Cangiani, A.; Manzini, G.; Sutton, OJ, Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal., 37, 3, 1317-1354 (2017) · Zbl 1433.65282
[38] Brenner, SC; Scott, LR, The Mathematical Theory of Finite Element Methods (2008), New York: Springer, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[39] Jinchao, XU, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33, 5, 1759-1777 (1996) · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[40] Talischi, C.; Paulino, GH; Pereira, A.; Menezes, IFM, Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidisc. Optim., 45, 309-328 (2012) · Zbl 1274.74401 · doi:10.1007/s00158-011-0706-z
[41] Giles, MB; Rose, ME, A numerical study of the steady scalar convective diffusion equation for small viscosity, J. Comput. Phys., 56, 513-529 (1984) · Zbl 0572.76087 · doi:10.1016/0021-9991(84)90110-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.