×

Approximation properties of univalent mappings on the unit ball in \(\mathbb{C}^n\). (English) Zbl 1390.32004

Summary: Let \(n\geq 2\). In this paper, we obtain approximation properties of various families of normalized univalent mappings \(f\) on the Euclidean unit ball \(\mathbb{B}^n\) in \(\mathbb{C}^n\) by automorphisms of \(\mathbb{C}^n\) whose restrictions to \(\mathbb{B}^n\) have the same geometric property of \(f\). First, we obtain approximation properties of spirallike, convex and \(g\)-starlike mappings \(f\) on \(\mathbb{B}^n\) by automorphisms of \(\mathbb{C}^n\) whose restrictions to \(\mathbb{B}^n\) have the same geometric property of \(f\), respectively. Next, for a nonresonant operator \(A\) with \(m(A) > 0\), we obtain an approximation property of mappings which have \(A\)-parametric representation by automorphisms of \(\mathbb{C}^n\) whose restrictions to \(\mathbb{B}^n\) have \(A\)-parametric representation. Certain questions will be also mentioned. Finally, we obtain an approximation property by automorphisms of \(\mathbb{C}^n\) for a subset of \(S_{I_n}^0(\mathbb{B}^n)\) consisting of mappings \(f\) which satisfy the condition \(\|Df(z)-I_n\|<1\), \(z\in \mathbb{B}^n\). Related results will be also obtained.

MSC:

32A30 Other generalizations of function theory of one complex variable
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)

References:

[1] Andersén, E.; Lempert, L., On the group of holomorphic automorphisms of \(C^n\), Invent. Math., 110, 371-388 (1992) · Zbl 0770.32015
[2] Arnold, V. I., (Geometrical Methods in the Theory of Ordinary Differential Equations. Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences), vol. 250 (1988), Springer-Verlag: Springer-Verlag New York) · Zbl 0648.34002
[3] Arosio, L., Resonances in Loewner equations, Adv. Math., 227, 1413-1435 (2011) · Zbl 1256.32022
[4] Arosio, L.; Bracci, F.; Hamada, H.; Kohr, G., An abstract approach to Loewner chains, J. Anal. Math., 119, 89-114 (2013) · Zbl 1321.32005
[5] Arosio, L.; Bracci, F.; Wold, E. F., Embedding univalent functions in filtering Loewner chains in higher dimensions, Proc. Amer. Math. Soc., 143, 1627-1634 (2015) · Zbl 1314.32022
[6] Bracci, F.; Contreras, M. D.; Díaz-Madrigal, S., Evolution families and the Loewner equation II: complex hyperbolic manifolds, Math. Ann., 344, 947-962 (2009) · Zbl 1198.32010
[7] Docquier, F.; Grauert, H., Levisches problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140, 94-123 (1960) · Zbl 0095.28004
[8] Duren, P.; Graham, I.; Hamada, H.; Kohr, G., Solutions for the generalized Loewner differential equation in several complex variables, Math. Ann., 347, 411-435 (2010) · Zbl 1196.32014
[9] Forstnerič, F.; Rosay, J. P., Approximation of biholomorphic mappings by automorphisms of \(C^n\), Invent. Math.. Invent. Math., Erratum: Invent. Math., 118, 573-574 (1994) · Zbl 0808.32017
[10] Graham, I.; Hamada, H.; Kohr, G., Parametric representation of univalent mappings in several complex variables, Canad. J. Math., 54, 324-351 (2002) · Zbl 1004.32007
[11] Graham, I.; Hamada, H.; Kohr, G., Radius problems for holomorphic mappings on the unit ball in \(C^n\), Math. Nachr., 279, 1474-1490 (2006) · Zbl 1116.32008
[12] Graham, I.; Hamada, H.; Kohr, G.; Kohr, M., Asymptotically spirallike mappings in several complex variables, J. Anal. Math., 105, 267-302 (2008) · Zbl 1148.32009
[13] Graham, I.; Hamada, H.; Kohr, G.; Kohr, M., Extremal properties associated with univalent subordination chains in \(C^n\), Math. Ann., 359, 61-99 (2014) · Zbl 1293.32021
[14] Graham, I.; Hamada, H.; Kohr, G.; Kohr, M., Support points and extreme points for mappings with \(A\)-parametric representation in \(C^n\), J. Geom. Anal., 26, 1560-1595 (2016) · Zbl 1357.32013
[15] Graham, I.; Kohr, G., Geometric Function Theory in One and Higher Dimensions (2003), Marcel Dekker Inc.: Marcel Dekker Inc. New York · Zbl 1042.30001
[16] Gurganus, K., \( \Phi \)-like holomorphic functions in \(C^n\) and Banach spaces, Trans. Amer. Math. Soc., 205, 389-406 (1975) · Zbl 0299.32018
[17] Hamada, H., Polynomially bounded solutions to the Loewner differential equation in several complex variables, J. Math. Anal. Appl., 381, 179-186 (2011) · Zbl 1227.32020
[18] Hamada, H., Approximation properties on spirallike domains of \(C^n\), Adv. Math., 268, 467-477 (2015) · Zbl 1301.32005
[19] Hamada, H.; Honda, T., Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chin. Ann. Math. Ser. B, 29, 353-368 (2008) · Zbl 1165.32006
[20] Hamada, H.; Iancu, M.; Kohr, G., Extremal problems for mappings with generalized parametric representation in \(C^n\), Complex Anal. Oper. Theory, 10, 1045-1080 (2016) · Zbl 1342.32013
[21] Iancu, M., Some applications of variation of Loewner chains in several complex variables, J. Math. Anal. Appl., 421, 1469-1478 (2015) · Zbl 1298.32003
[22] Kasimi, A. El., Approximation polynômiale dans les domaines étoilés de \(C^n\), Complex Var. Theory Appl., 10, 179-182 (1988) · Zbl 0627.32008
[23] Liu, T.; Ren, G., Decomposition theorem of normalized biholomorphic convex mappings, J. Reine Angew. Math., 496, 1-13 (1998) · Zbl 0894.32009
[24] Muir, J. R.; Suffridge, T. J., Unbounded convex mappings of the ball in \(C^n\), Proc. Amer. Math. Soc., 129, 3389-3393 (2001) · Zbl 0978.32016
[25] Pfaltzgraff, J. A., Subordination chains and univalence of holomorphic mappings in \(C^n\), Math. Ann., 210, 55-68 (1974) · Zbl 0275.32012
[26] Poreda, T., On the univalent holomorphic maps of the unit polydisc in \(C^n\) which have the parametric representation, I-the geometrical properties, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 41, 105-113 (1987) · Zbl 0698.32004
[27] Poreda, T., On generalized differential equations in Banach spaces, Dissertationes Math., 310, 1-50 (1991) · Zbl 0745.35048
[28] Reich, S.; Shoikhet, D., Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces (2005), Imperial College Press: Imperial College Press London · Zbl 1089.46002
[29] Roper, K.; Suffridge, T. J., Convexity properties of holomorphic mappings in \(C^n\), Trans. Amer. Math. Soc., 351, 1803-1833 (1999) · Zbl 0926.32012
[30] Roth, O., Pontryagin’s maximum principle for the Loewner equation in higher dimensions, Canad. J. Math., 67, 942-960 (2015) · Zbl 1326.32027
[31] Schleißinger, S., Embedding Problems in Loewner Theory (2014), Julius-Maximilians-Universität Würzburg, (Ph.D. thesis)
[32] Schleißinger, S., On support points of the class \(S^0(B^n)\), Proc. Amer. Math. Soc., 142, 3881-3887 (2014) · Zbl 1305.32009
[33] Suffridge, T. J., (Starlikeness, Convexity and Other Geometric Properties of Holomorphic Maps in Higher Dimensions. Starlikeness, Convexity and Other Geometric Properties of Holomorphic Maps in Higher Dimensions, Lecture Notes Math., vol. 599 (1977), Springer-Verlag), 146-159 · Zbl 0356.32004
[34] Voda, M., Loewner Theory in Several Complex Variables and Related Problems (2011), Univ. Toronto, (Ph.D. thesis)
[35] Voda, M., Solution of a Loewner chain equation in several complex variables, J. Math. Anal. Appl., 375, 58-74 (2011) · Zbl 1209.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.