×

Robust output consensus for a class of fractional-order interval multi-agent systems. (English) Zbl 07872700

Summary: This paper is devoted to the robust output consensus problem of fractional-order interval multi-agent systems (FOIMASs) with fixed undirected topologies, where the fractional order, the system matrix, and the input matrix are perturbed simultaneously, and there exist linear coupling relationships among the fractional order and the perturbations of the system matrix and the input matrix. According to the information of the agents’ neighbors, we design a distributed output feedback protocol. A sufficient condition guaranteeing the robust output consensus of FOIMASs is derived in terms of nonlinear matrix inequalities. By the matrix transformation and the singular value decomposition, the nonlinear matrix inequalities are transformed into linear matrix inequalities, and the output feedback gain matrix is obtained. A numerical simulation example is presented to demonstrate the effectiveness of the proposed method.
© 2019 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

MSC:

93-XX Systems theory; control
Full Text: DOI

References:

[1] D.Barbucha, Search modes for the cooperative multi‐agent system solving the vehicle routing problem, Neurocomputing, 88 (2012), 13-23.
[2] J. R.Lawton and R. W.Beard, Synchronized multiple spacecraft rotations, Automatica, 38 (2002), 1359-1364. · Zbl 1032.93553
[3] R.Olfati‐saber, Flocking for multi‐agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51 (3) (2006), 401-420. · Zbl 1366.93391
[4] S.Wen et al., Elman fuzzy adaptive control for obstacle avoidance of mobile robots using hybrid force/position in corporation, IEEE Trans. Syst. Man Cybern. Part C, 42 (4) (2012), 603-608.
[5] B.Shen, Z.Wang, and Y.Hung, Distributed H_∞‐consensus filtering in sensor networks with multiple missing measurements: The finite‐horizon case, Automatica, 46 (10) (2010), 1682-1688. · Zbl 1204.93122
[6] B.Shen, Z.Wang, and X.Liu, A stochastic sampled‐data approach to distributed H_∞ filtering in sensor networks, IEEE Trans. Circuits Syst. I, Reg. Papers, 58 (9) (2011), 2237-2246. · Zbl 1468.93070
[7] Z. H.Guan, Y.Wu, and G.Feng, Consensus analysis based on impulsive systems in multi‐agent networks, IEEE Trans. Circuits Syst. I, Reg. Papers, 59 (1) (2012), 170-178. · Zbl 1468.93029
[8] H.Su, X.Wang, and Z.Lin, Flocking of multi‐agents with a virtual leader, IEEE Trans. Autom. Control, 54 (2) (2009), 293-307. · Zbl 1367.37059
[9] H.Su et al., Adaptive second order consensus of networked mobile agents with nonlinear dynamics, Automatica, 47 (2) (2010), 368-375. · Zbl 1207.93006
[10] K.Peng and Y.Yang, Collective tracking control for multi‐agent system on balanced graphs, Asian J. Control, 13 (4) (2011), 505-512. · Zbl 1219.93006
[11] J.Qin et al., Recent advances in consensus of multi‐agent systems: A brief survey, IEEE Trans. Ind. Electron., 64 (6) (2017), 4972-4983.
[12] Z.Yu et al., Directed spanning tree‐based adaptive protocols for second‐order consensus of multiagent systems, Int. J. Robust Nonlinear Control, 28 (6) (2018), 2172-2190. · Zbl 1390.93466
[13] A.Ponomarev, Z. Y.Chen, and H. T.Zhang, Discrete‐time predictor feedback for consensus of multi‐agent systems with delays, IEEE Trans. Autom. Control, 63 (2) (2018), 498-504. · Zbl 1390.93071
[14] H. T.Zhang, Z. Y.Chen, and X. Y.Mo, Effect of adding edges to consensus networks with directed acyclic graphs, IEEE Trans. Autom. Control, 62 (9) (2017), 4891-4897. · Zbl 1390.90193
[15] C.Tricaud and Y.Chen, Time‐optimal control of systems with fractional dynamics, J. Differ. Equ., 46 (1048) (2010), 1-16. · Zbl 1203.49031
[16] R. L.Bagley and P. J.Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheology, 30 (1986), 133-155. · Zbl 0613.73034
[17] I.Cohen et al., Biofluiddynamics of lubricating bacteria, Math. Meth. Appl. Sci., 24 (17-18) (2001), 1429-1468. · Zbl 1097.76618
[18] X.Yin, D.Yue, and S.Hu, Consensus of fractional‐order heterogeneous multi‐agent systems, IET Control Theory Appl., 7 (2) (2013), 314-322.
[19] J.Bai et al., Consensus problem with a reference state for fractional‐order multi‐agent systems, Asian J. Control, 19 (3) (2017), 1009-1018. · Zbl 1366.93006
[20] Z.Yu, H.Jiang, and C.Hu, Leader‐following consensus of fractional‐order multi‐agent systems under fixed topology, Neurocomputing, 149 (2015), 613-620.
[21] W.Sun et al., Convergence speed of a fractional order consensus algorithm over undirected scale‐free networks, Asian J. Control, 13 (6) (2011), 936-946. · Zbl 1263.93013
[22] J.Shen, J.Cao, and J.Lu, Consensus of fractional‐order systems with non‐uniform input and communication delays, Proc. Institut. Mech. Eng. I: J. Syst. Control. Eng., 226 (2) (2012), 271-283.
[23] Z.Yu et al., Necessary and sufficient conditions for consensus of fractional‐order multi‐agent systems via sampled‐data control, IEEE Trans. Cybern, 47 (2017), 1892-1901.
[24] W.Yu et al., Observer design for tracking consensus in second‐order multi‐agent systems: Fractional order less than two, IEEE Trans. Autom. Control, 62 (2) (2017), 894-900. · Zbl 1364.93497
[25] Z.Yu et al., Leader‐following consensus of fractional‐order multi‐agent systems via adaptive pinning control, Int. J. Control, 88 (9) (2015), 1746-1756. · Zbl 1338.93039
[26] G.Ren and Y.Yu, Consensus of fractional multi‐agent systems using distributed adaptive protocols, Asian J. Control, 19 (6) (2017), 2076-2084. · Zbl 1386.93017
[27] Y. Q.Chen, H. S.Ahn, I.Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing, 86 (10) (2006), 2611-2618. · Zbl 1172.94385
[28] H. S.Ahn and Y. Q.Chen, Necessary and sufficient stability condition of fractional‐order interval linear systems, Automatica, 44 (11) (2008), 2985-2988. · Zbl 1152.93455
[29] H. S.Ahn, Y. Q.Chen, I.Podlubny, Robust stability test of a class of linear time‐invariant interval fractional‐order system using Lyapunov inequality, Appl. Math. Comput., 187 (1) (2007), 27-34. · Zbl 1123.93074
[30] J. G.Lu and Y. Q.Chen, Robust stability and stabilization of fractional‐order interval systems with the fractional order α: The 0<α<1 case, IEEE Trans. Autom. Control, 55 (1) (2010), 152-158. · Zbl 1368.93506
[31] J. G.Lu and G.Chen, Robust stability and stabilization of fractional‐order interval systems: An LMI approach, IEEE Trans. Autom. Control, 54 (6) (2009), 1294-1299. · Zbl 1367.93472
[32] C.Song, J.Cao, and Y.Liu, Robust consensus of fractional‐order multi‐agent systems with positive real uncertainty via second‐order neighbors information, Neurocomputing, 165 (2015), 293-299.
[33] X.Yin and S.Hu, Consensus of fractional‐order uncertain multi‐agent systems based on output feedback, Asian J. Control, 15 (5) (2013), 1538-1542. · Zbl 1286.93024
[34] J.Chen et al., Multiconsensus of fractional‐order uncertain multi‐agent systems, Neurocomputing, 168 (2015), 698-705.
[35] H.Li, Observer‐type consensus protocol for a class of fractional‐order uncertain multiagent systems, Abstr Appl Anal, 6 (2012), 1-18. · Zbl 1253.93095
[36] C.Li, and J.Wang, Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0<α<1 case, J. Frankl. Inst., 349 (7) (2012), 2406-2419. · Zbl 1287.93063
[37] Z.Liao et al., Robust stability analysis for a class of fractional order systems with uncertain parameters, J. Frankl. Inst., 348 (6) (2011), 1101-1113. · Zbl 1222.93171
[38] I.Podlubny, Fractional differential equations, Academic Press, New York, 1999. · Zbl 0918.34010
[39] X.Ma et al., The consensus region design and analysis of fractional‐order multi‐agent systems, Int. J. Syst. Sci., 48 (3) (2017), 629-636. · Zbl 1358.93012
[40] J.Sabatier, M.Moze, and C.Farges, LMI stability conditions for fractional order systems, Comput. Math. Appl., 59 (5) (2010), 1594-1609. · Zbl 1189.34020
[41] R. A.Horn and C. R.Johnson, Matrix analysis, Cambridge University Press, New York, 1990. · Zbl 0704.15002
[42] P. P.Khargonekar, I. R.Petersen, and K.Zhou, Robust stabilization of uncertain linear systems: Quadratic stabilizability and H_∞ control theory, IEEE Trans. Autom. Control, 35 (3) (1990), 356-361. · Zbl 0707.93060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.