×

A convergence framework for optimal transport on the sphere. (English) Zbl 07549402

Summary: We consider a PDE approach to numerically solving the optimal transportation problem on the sphere. We focus on both the traditional squared geodesic cost and a logarithmic cost, which arises in the reflector antenna design problem. At each point on the sphere, we replace the surface PDE with a generalized Monge-Ampère type equation posed on the tangent plane using normal coordinates. The resulting nonlinear PDE can then be approximated by any consistent, monotone scheme for generalized Monge-Ampère type equations on the plane. Existing techniques for proving convergence do not immediately apply because the PDE lacks both a comparison principle and a unique solution, which makes it difficult to produce a stable, well-posed scheme. By augmenting the discretization with an additional term that constrains the solution gradient, we obtain a strong form of stability. A modification of the Barles-Souganidis convergence framework then establishes convergence to the mean-zero solution of the original PDE.

MSC:

65-XX Numerical analysis
35D40 Viscosity solutions to PDEs
35J15 Second-order elliptic equations
35J60 Nonlinear elliptic equations
35J96 Monge-Ampère equations
58J05 Elliptic equations on manifolds, general theory
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Barles, G.; Souganidis, PE, Convergence of approximation schemes for fully nonlinear second order equations, Asymptot. Anal., 4, 271-283 (1991) · Zbl 0729.65077
[2] Benamou, JD; Collino, F.; Mirebeau, JM, Monotone and consistent discretization of the Monge-Ampère operator, Math. Comput., 85, 302, 2743-2775 (2016) · Zbl 1416.65400 · doi:10.1090/mcom/3080
[3] Benamou, JD; Duval, V., Minimal convex extensions and finite difference discretisation of the quadratic Monge-Kantorovich problem, Eur. J. Appl. Math., 30, 1-38 (2017) · Zbl 1427.65326
[4] Benamou, JD; Froese, BD; Oberman, AM, Numerical solution of the optimal transportation problem using the Monge-Ampère equation, J. Comput. Phys., 260, 107-126 (2014) · Zbl 1349.65554 · doi:10.1016/j.jcp.2013.12.015
[5] Crandall, MG; Ishii, H.; Lions, PL, User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[6] Cui, L.; Qi, X.; Wen, C.; Lei, N.; Li, X.; Zhang, M.; Gu, X., Spherical optimal transportation, Comput. Aided Des., 115, 181-193 (2019) · doi:10.1016/j.cad.2019.05.024
[7] Figalli, A.; Rifford, L.; Villani, C., On the Ma-Trudinger-Wang curvature on surfaces, Calc. Var., 39, 307-332 (2010) · Zbl 1203.53034 · doi:10.1007/s00526-010-0311-9
[8] Finlay, C.; Oberman, A., Improved accuracy of monotone finite difference schemes on point clouds and regular grids, SIAM J. Sci. Comput., 41, 5, A3097-A3117 (2019) · Zbl 1481.65204 · doi:10.1137/18M1200269
[9] Froese, BD, A numerical method for the elliptic Monge-Ampère equation with transport boundary conditions, SIAM J. Sci. Comput., 34, 3, A1432-A1459 (2012) · Zbl 1252.65180 · doi:10.1137/110822372
[10] Froese, BD, Meshfree finite difference approximations for functions of the eigenvalues of the Hessian, Numer. Math., 138, 1, 75-99 (2018) · Zbl 1410.35037 · doi:10.1007/s00211-017-0898-2
[11] Froese, BD; Oberman, AM, Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher, SIAM J. Numer. Anal., 49, 4, 1692-1714 (2011) · Zbl 1255.65195 · doi:10.1137/100803092
[12] Glimm, T.; Oliker, V., Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem, J. Math. Sci., 117, 3, 4096-4108 (2003) · Zbl 1049.49030 · doi:10.1023/A:1024856201493
[13] Hamfeldt, B.; Salvador, T., Higher-order adaptive finite difference methods for fully nonlinear elliptic equations, J. Sci. Comput., 75, 3, 1282-1306 (2018) · Zbl 1395.35082 · doi:10.1007/s10915-017-0586-5
[14] Hamfeldt, BD, Convergence framework for the second boundary value problem for the Monge-Ampère equation, SIAM J. Numer. Anal., 57, 2, 945-971 (2019) · Zbl 1418.35207 · doi:10.1137/18M1201913
[15] Hamfeldt, BF, Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature, Commun. Pure Appl. Anal., 17, 2, 671-707 (2018) · Zbl 1382.35117 · doi:10.3934/cpaa.2018036
[16] Hamfeldt, BF; Lesniewski, J., A convergent finite difference method for computing minimal Lagrangian graphs, Commun. Pure Appl. Anal., 21, 2, 393-418 (2022) · Zbl 1493.65173 · doi:10.3934/cpaa.2021182
[17] Hamfeldt, BF; Turnquist, AGR, A convergent finite difference method for optimal transport on the sphere, J. Comput. Phys., 445, 15 (2021) · Zbl 07515866 · doi:10.1016/j.jcp.2021.110621
[18] Kocan, M., Approximation of viscosity solutions of elliptic partial differential equations on minimal grids, Numer. Math., 72, 1, 73-92 (1995) · Zbl 0846.65053 · doi:10.1007/s002110050160
[19] Lee, JM, Riemannian Manifolds: An Introduction to Curvature (2006), Berlin: Springer, Berlin
[20] Lévy, B., A numerical algorithm for L2 semi-discrete optimal transport in 3D, ESAIM Math. Modell. Numer. Anal., 49, 6, 1693-1715 (2015) · Zbl 1331.49037 · doi:10.1051/m2an/2015055
[21] Lindsey, M.; Rubinstein, YA, Optimal transport via a Monge-Ampère optimization problem, SIAM J. Math. Anal., 49, 4, 3073-3124 (2017) · Zbl 1479.35395 · doi:10.1137/16M1071560
[22] Loeper, G., On the regularity of solutions of optimal transportation problems, Acta Math., 202, 241-283 (2009) · Zbl 1219.49038 · doi:10.1007/s11511-009-0037-8
[23] Loeper, G., Regularity of optimal maps on the sphere: the quadratic cost and the reflector antenna, Arch. Ration. Mech. Anal., 199, 1, 269-289 (2011) · Zbl 1231.35280 · doi:10.1007/s00205-010-0330-x
[24] McRae, AT; Cotter, CJ; Budd, CJ, Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements, SIAM J. Sci. Comput., 40, 2, A1121-A1148 (2018) · Zbl 1448.65143 · doi:10.1137/16M1109515
[25] Nochetto, R.; Ntogkas, D.; Zhang, W., Two-scale method for the Monge-Ampère equation: convergence to the viscosity solution, Math. Comput., 88, 637-664 (2018) · Zbl 1405.65154 · doi:10.1090/mcom/3353
[26] Oberman, AM, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 44, 2, 879-895 (2006) · Zbl 1124.65103 · doi:10.1137/S0036142903435235
[27] Oberman, AM, Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian, Discrete Contin. Dyn. Syst. Ser. B, 10, 1, 221-238 (2008) · Zbl 1145.65085
[28] Prins, CR; Beltman, R.; ten Thije Boonkkamp, JHM; IJzerman, WL; Tukker, TW, A least-squares method for optimal transport using the Monge-Ampère equation, SIAM J. Sci. Comput., 37, 6, 937-961 (2015) · Zbl 1342.65149 · doi:10.1137/140986414
[29] Romijn, LB; ten Thije Boonkkamp, JHM; IJzerman, WL, Inverse reflector design for a point source and far-field target, J. Comput. Phys., 408, 109283 (2020) · Zbl 07505618 · doi:10.1016/j.jcp.2020.109283
[30] Schmitzer, B., A sparse multiscale algorithm for dense optimal transport, J. Math. Imaging Vis., 56, 2, 238-259 (2016) · Zbl 1351.49037 · doi:10.1007/s10851-016-0653-9
[31] Wang, XJ, On the design of a reflector antenna II, Calc. Var. Partial Differ. Equ., 20, 3, 329-341 (2004) · Zbl 1065.78013 · doi:10.1007/s00526-003-0239-4
[32] Weller, H.; Browne, P.; Budd, C.; Cullen, M., Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation, J. Comput. Phys., 308, 102-123 (2016) · Zbl 1351.86008 · doi:10.1016/j.jcp.2015.12.018
[33] Yadav, NK; ten Thije Boonkkamp, JHM; Ijzerman, WL, A Monge-Ampère problem with non-quadratic cost function to compute freeform lens surfaces, J. Sci. Comput., 80, 1, 475-499 (2019) · Zbl 1447.35165 · doi:10.1007/s10915-019-00948-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.