×

Topological decompositions of the Pauli group and their influence on dynamical systems. (English) Zbl 1472.57027

In this article, we will see that it is possible to realize a manifold which has the Pauli group \(P = \langle X, Y, Z \mid X^2 = Y^2 = Z^2 = 1, (YZ)^4 = (ZX)^4 = (XY)^4 = 1 \rangle\) as its fundamental group. The Pauli group \(P\) is a group of order \(16\) introduced by [W. Pauli jun., Z. Phys. 43, 601–623 (1927; JFM 53.0858.02)]. Specific expressions of the three generators are: \[ X = \begin{bmatrix} 0&1 \\ 1&0 \end{bmatrix}, \ Y = \begin{bmatrix} 0&-i\\ i&0 \end{bmatrix}\text{ and } Z = \begin{bmatrix} 1&0\\ 0&-1 \end{bmatrix}. \]
It is easy to check that \(X^2 = Y^2 = Z^2 = I\), where \(I\) is the identity matrix.
The authors’ main result is the theorem below. Note that \(S^3\) indicates the three-sphere. Further, the quaternion group and a cyclic group of order four, denoted by \(\mathbb Q_8\) and \(\mathbb Z_4\) respectively, operate on \(S^3\). Both finite actions are isometries on \(S^3\), hence the quotient spaces \(U = S^3/Q_8\) and \(V = S^3/\mathbb Z_4\) are both elliptic three-manifolds. More specifically, \(U\) is a quaternion manifold which is a family of the prism manifolds and \(V\) is a lens space \(L(4, 1)\).
Theorem. There exist two compact path connected quotient spaces \(U = S^3/Q_8\) and \(V = S^3/\mathbb Z_4\) such that the following conditions are true:
1.
\(U \cup V\) is a compact path connected space with \(U \cap V \neq \emptyset\), \(\pi_1(U \cap V) \cong \mathbb Z_2\) and \(P \cong \pi_1(U \cup V) / N\) for some normal subgroup \(N\) of \(\pi_1(U \cup V)\).
2.
\(U \# V\) is a Riemannian manifold of \(dim(U \# V) = 3\) and \(P \cong \pi_1(U \# V) / L\) for some normal subgroup \(L\) of \(\pi_1(U \# V)\), where \(\#\) denotes the usual connected sum of manifolds.

In the first statement, the familiar assumptions of the Seifert and van Kampen Theorem are satisfied. For example, [C. Kosniowski, A first course in algebraic topology. (1980; Zbl 0441.55001), Chapter 23] is a handy reference source regarding the theorem we are using here. In fact, its proof is a repeated use of the Seifert and van Kampen Theorem involving algebraic manipulations of elements in \(\pi_1(U) \cong Q_8\), \(\pi_1(V) \cong \mathbb Z_4\) and \(\pi_1(U \cap V) = \mathbb Z_2\) in order to obtain the appropriate relations.
Moreover, the article discusses connections with physics or quantum mechanics, with an emphasis on pseudo-bosons and pseudo-fermions.

MSC:

57M07 Topological methods in group theory
57M60 Group actions on manifolds and cell complexes in low dimensions
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
22E70 Applications of Lie groups to the sciences; explicit representations

References:

[1] Bagarello, F.; Russo, FG, A description of pseudo-bosons in terms of nilpotent Lie algebras, J. Geom. Phy., 125, 1-11 (2018) · Zbl 1481.17017 · doi:10.1016/j.geomphys.2017.12.002
[2] Bagarello, F.; Russo, FG, On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank, J. Geom. Phy., 125, 124-131 (2019) · Zbl 1482.17027 · doi:10.1016/j.geomphys.2018.11.009
[3] Bagarello, F.; Russo, FG, Realization of Lie Algebras of High Dimension via Pseudo-Bosonic Operators, J. Lie Theory, 30, 925-938 (2020) · Zbl 1481.17018
[4] Bagarello, F., Weak pseudo-bosons, J. Phys. A, 53, 135201 (2020) · Zbl 1514.81293 · doi:10.1088/1751-8121/ab766f
[5] Bagarello, F., et al.: Deformed canonical (anti-)commutation relations and non hermitian Hamiltonians. In: aspects, Mathematical, Znojil, M. (eds.) Non-selfadjoint operators in quantum physics, pp 121-188. Wiley, Hoboken (2015) · Zbl 1350.81008
[6] Bagarello, F., Linear pseudo-fermions, J. Phys. A, 45, 444002 (2012) · Zbl 1263.81189 · doi:10.1088/1751-8113/45/44/444002
[7] Bagarello, F., Damping and Pseudo-fermions, J. Math. Phys., 54, 023509 (2013) · Zbl 1280.81033 · doi:10.1063/1.4790514
[8] Bagarello, F.; Gargano, F., Model pseudofermionic systems: connections with exceptional points, Phys. Rev. A, 89, 032113 (2014) · doi:10.1103/PhysRevA.89.032113
[9] Bender, CM, PT Symmetry in Quantum and Classical Physics (2019), Singapore: World Scientific, Singapore
[10] Borzellino, J. E.: Riemannian geometry of orbifolds, UCLA PhD thesis (1992)
[11] Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, AMS Providence (2001) · Zbl 0981.51016
[12] Chepilko, N.M., Romanenko, A.V.: Quantum mechanics on Riemannian Manifold in Schwinger’s Quantization Approach I, II, III, IV, see respectively: arXiv:hep-th/0102139, arXiv:hep-th/0102115, arXiv:hep-th/0102117, arXiv:hep-th/0201074 · Zbl 1099.81514
[13] Cherbal, O.; Drir, M.; Maamache, M.; Trifonov, DA, Fermionic coherent states for pseudo-Hermitian two-level systems, J. Phys. A, 40, 1835-1844 (2007) · Zbl 1113.81073 · doi:10.1088/1751-8113/40/8/010
[14] Doerk, K.; Hawkes, T., Finite Soluble Groups (1994), Berlin: W. de Gruyter, Berlin · Zbl 0753.20001
[15] Gorenstein, D., Finite Groups (1980), New York: Chelsea Publishing Company, New York · Zbl 0463.20012
[16] Gottesman, D.: Stabilizer codes and quantum error correction, preprint, arXiv:quant-ph/9705052 (1997)
[17] Gottesman, D.: Fault-Tolerant Quantum Computation with Higher-Dimensional Systems. In: Williams, C.P. (ed.) Quantum Computing and Quantum Communications. LNCS 1509, pp. 302-313. Springer, Berlin (1999) · Zbl 0944.68511
[18] Greenberg, OW, Particles with small violations of Fermi or Bose statistics, Phys. Rev. D, 43, 4111-4120 (1991) · doi:10.1103/PhysRevD.43.4111
[19] Hatcher, A., Algebraic Topology (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1044.55001
[20] Hofmann, KH; Morris, S., The Structure of Compact Groups (2006), Berlin: de Gruyter, Berlin · Zbl 1139.22001 · doi:10.1515/9783110199772
[21] Kibler, M. R.: Variations on a theme of Heisenberg, Pauli and Weyl. J. Phys. A 41(37) (2008) · Zbl 1147.81014
[22] Knill, E.: Non-binary unitary error bases and quantum codes, preprint, arXiv:9608048 (1996)
[23] Kosniowski, C., Introduction to Algebraic Topology (1980), Cambridge: Cambridge University Press, Cambridge · Zbl 0441.55001
[24] Krüger, O., Werner, R.F.: Open problems in quantum information, preprint, arXiv:quant-ph/0504166 (2005)
[25] Magnus, W.; Karrass, A.; Solitar, D., Combinatorial Group Theory (1976), New York: Dover Publications, New York · Zbl 0362.20023
[26] Maleki, Y., Para-Grassmannian coherent and squeezed states for Pseudo-Hermitian q-oscillator and their entanglement, SIGMA, 7, 084 (2011) · Zbl 1250.81055
[27] Messiah, A., Quantum Mechanics, vol. 1 (1967), Amsterdam: North Holland Publishing Company, Amsterdam · Zbl 0102.42602
[28] Mohapatra, RN, Infinite statistics and a possible small violation of the Pauli principle, Phys. Lett. B., 242, 407-411 (1990) · doi:10.1016/0370-2693(90)91783-8
[29] Pauli, W., Zur Quantenmechanik des magnetischen Elektrons, Z. Phys., 43, 601-623 (1927) · JFM 53.0858.02 · doi:10.1007/BF01397326
[30] Provost, JP; Vallee, G., Riemannian structure on manifolds of quantum states, Commun. Math. Phys., 76, 289-301 (1980) · Zbl 0451.53053 · doi:10.1007/BF02193559
[31] Reni, M.; Zimmermann, BP, Hyperelliptic involutions of hyperbolic 3-manifolds, Math. Ann., 321, 295-317 (2001) · Zbl 0986.57012 · doi:10.1007/s002080100229
[32] Rocchetto, A., Russo, F. G.: Decomposition of Pauli groups via weak central products, preprint arXiv:1911.10158 (2019)
[33] Zimmermann, BP, On finite groups acting on spheres and finite subgroups of orthogonal groups, Sib. Elektron. Mat. Izv., 9, 1-12 (2012) · Zbl 1330.57027
[34] Zimmermann, BP, On topological actions of finite groups on S3, Topology Appl., 236, 59-63 (2018) · Zbl 1393.57015 · doi:10.1016/j.topol.2018.01.004
[35] Zimmermann, BP, On hyperbolic knots with homeomorphic cyclic branched coverings, Math. Ann., 311, 665-673 (1998) · Zbl 0913.57008 · doi:10.1007/s002080050205
[36] Zimmermann, BP, On topological actions of finite non-standard groups on spheres, Monatsh. Math., 183, 219-223 (2017) · Zbl 1365.57041 · doi:10.1007/s00605-016-0959-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.