×

Determination of time dependent factors of coefficients in fractional diffusion equations. (English) Zbl 1348.35317

Summary: In the present paper, we consider initial-boundary value problems for partial differential equations with time-fractional derivatives which evolve in \(Q=\Omega\times(0,T)\) where \(\Omega\) is a bounded domain of \(\mathbb{R}^d\) and \(T>0\). We study the stability of the inverse problems of determining the time-dependent parameter in a source term or a coefficient of zero-th order term from observations of the solution at a point \(x_0\in\overline{\Omega}\) for all \(t\in(0,T)\).

MSC:

35R30 Inverse problems for PDEs
35R11 Fractional partial differential equations

References:

[1] E. E. Adams, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis,, Water Resources Res., 28, 3293 (1992) · doi:10.1029/92WR01757
[2] R. A. Adams, <em>Sobolev Spaces</em>,, Academic Press (1975) · Zbl 0314.46030
[3] O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain,, Nonlinear Dyn., 29, 145 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[4] S. Beckers, Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives,, International Series of Numerical Mathematics, 164, 45 (2013) · Zbl 1273.35289
[5] H. Brezis, <em>Functional Analysis, Sobolev Spaces and Partial Differential Equations</em>,, Springer (2011) · Zbl 1220.46002
[6] A. L. Bukhgeim, Global uniqueness of class of multidimensional inverse problems,, Sov. Math. Dokl., 24, 244 (1981) · Zbl 0497.35082
[7] J. R. Cannon, An inverse problem for the heat equation,, Inverse Problems, 2, 395 (1986) · Zbl 0624.35078 · doi:10.1088/0266-5611/2/4/007
[8] J. Carcione, Theory and simulation of time-fractional fluid diffusion in porous media,, Journal of Physics A: Mathematical and Theoretical, 46 (2013) · Zbl 1396.76085 · doi:10.1088/1751-8113/46/34/345501
[9] J. Cheng, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation,, Inverse Problems, 25 (2009) · Zbl 1181.35322 · doi:10.1088/0266-5611/25/11/115002
[10] M. Choulli, Stability of the determination of a time-dependent coefficient in parabolic equations,, Math. Control Relat. Fields, 3, 143 (2013) · Zbl 1259.35221 · doi:10.3934/mcrf.2013.3.143
[11] D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order,, Proceedings of the Japan Academy, 43, 82 (1967) · Zbl 0154.16201 · doi:10.3792/pja/1195521686
[12] P. Gaitan, A stability result for a time-dependent potential in a cylindrical domain,, Inverse Problems, 29 (2013) · Zbl 1276.35097 · doi:10.1088/0266-5611/29/6/065006
[13] V. D. Gejji, Boundary value problems for fractional diffusion-wave equation,, Aust. J. Math. Anal. Appl., 3, 1 (2006) · Zbl 1093.35041
[14] R. Gorenflo, Fractional diffusion processes: Probability distributions and continuous time random walk,, in Processes with long range correlations (eds. G. Rangarajan and M. Ding), 148 (2003) · doi:10.1007/3-540-44832-2_8
[15] Y. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles,, Water Resources Res., 34, 1027 (1998) · doi:10.1029/98WR00214
[16] Y. Hatano, Determination of order in fractional diffusion equation,, J. Math-for-Ind. 5A, 5A, 51 (2013) · Zbl 1446.35247
[17] D. Henry, <em>Geometric Theory of Semilinear Differential Equations</em>,, Springer-Verlag (1981) · Zbl 0456.35001
[18] Z. Li, Uniqueness in inverse boundary value problems for fractional diffusion equations,, Inverse Problems, 32 (2016) · Zbl 1332.35396 · doi:10.1088/0266-5611/32/1/015004
[19] J.-L. Lions, <em>Problèmes Aux Limites Non Homogènes et Applications</em>, Vol. I,, Dunod (1968) · Zbl 0165.10801
[20] Y. Liu, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem,, <a href= · Zbl 1346.35216
[21] Y. Luchko, Initial-boundary value problems for the generalized time-fractional diffusion equation,, Journal of Mathematical Analysis and Applications, 374, 538 (2011) · Zbl 1202.35339 · doi:10.1016/j.jmaa.2010.08.048
[22] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation,, J. Math. Anal. Appl., 351, 218 (2009) · Zbl 1172.35341 · doi:10.1016/j.jmaa.2008.10.018
[23] D. Matignon, Stability properties for generalized fractional differential systems,, ESAIM:Proc., 5, 145 (1998) · Zbl 0920.34010 · doi:10.1051/proc:1998004
[24] D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets,, in Digital Signal and Image Processing Series (eds. P. Abry, 7, 237 (2009) · Zbl 1209.26012
[25] R. Metzler, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Physics reports, 339, 1 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[26] K. S. Miller, <em>An Introduction to the Fractional Calculus and Fractional Differential Equations</em>,, Wiley (1993) · Zbl 0789.26002
[27] L. Miller, Coefficient inverse problem for a fractional diffusion equation,, Inverse Problems, 29 (2013) · Zbl 1278.35268 · doi:10.1088/0266-5611/29/7/075013
[28] I. Podlubny, <em>Fractional Differential Equations</em>,, Academic Press (1999) · Zbl 0918.34010
[29] A. I. Prilepko, <em>Methods for Solving Inverse Problems in Mathematical Physics</em>,, Marcel Dekker (2000) · Zbl 0947.35173
[30] H. E. Roman, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27, 3407 (1994) · Zbl 0827.60057 · doi:10.1088/0305-4470/27/10/017
[31] S. Saitoh, Convolution inequalities and applications,, J. Ineq. Pure and Appl. Math., 4 (2003) · Zbl 1058.44004
[32] S. Saitoh, Reverse convolution inequalities and applications to inverse heat source problems,, J. Ineq. Pure and Appl. Math., 3 (2002) · Zbl 1029.44002
[33] K. Sakamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382, 426 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[34] S. G. Samko, <em>Fractional Integrals and Derivatives</em>,, Gordon and Breach Science Publishers (1993) · Zbl 0818.26003
[35] E. M. Stein, <em>Singular Intearals and Differentiability Properties of Functions</em>,, Princeton university press (1970) · Zbl 0207.13501
[36] R. S. Strichartz, Multipliers on fractional Sobolev spaces,, J. Math. Mech., 16, 1031 (1967) · Zbl 0145.38301
[37] X. Xu, Carleman estimate for a fractional diffusion equation with half order and application,, Appl. Anal., 90, 1355 (2011) · Zbl 1236.35199 · doi:10.1080/00036811.2010.507199
[38] M. Yamamoto, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate,, Inverse Problems, 28 (2012) · Zbl 1256.35195 · doi:10.1088/0266-5611/28/10/105010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.