×

Quantization, dequantization, and distinguished states. (English) Zbl 07920212

Summary: Geometric quantization is a natural way to construct quantum models starting from classical data. In this work, we start from a symplectic vector space with an inner product and – using techniques of geometric quantization – construct the quantum algebra and equip it with a distinguished state. We compare our result with the construction due to Sorkin – which starts from the same input data – and show that our distinguished state coincides with the Sorkin-Johnson state. Sorkin’s construction was originally applied to the free scalar field over a causal set (locally finite, partially ordered set). Our perspective suggests a natural generalization to less linear examples, such as an interacting field.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

References:

[1] Afshordi, N.; Aslanbeigi, S.; Sorkin, R. D., A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features and cosmology, J. High Energy Phys., JHEP08(2012)137, 2012 · Zbl 1397.81188 · doi:10.1007/JHEP08(2012)137
[2] Johnston, S., Feynman propagator for a free scalar field on a causal set, Phys. Rev. Lett., 103, 2009 · doi:10.1103/PhysRevLett.103.180401
[3] Sorkin, R. D., Scalar field theory on a causal set in histories form, J. Phys.: Conf. Ser., 306, 2011 · doi:10.1088/1742-6596/306/1/012017
[4] Fewster, C. J.; Verch, R., On a recent construction of ‘vacuum-like’ quantum field states in curved spacetime, Class. Quantum Grav., 29, 2012 · Zbl 1256.83013 · doi:10.1088/0264-9381/29/20/205017
[5] Fewster, C. J.; Verch, R., The necessity of the Hadamard condition, Class. Quantum Grav., 30, 2013 · Zbl 1284.83057 · doi:10.1088/0264-9381/30/23/235027
[6] Brum, M.; Fredenhagen, K., ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes, Class. Quantum Grav., 31, 2014 · Zbl 1292.83027 · doi:10.1088/0264-9381/31/2/025024
[7] Wingham, F L2018Generalised Sorkin-Johnston and Brum-Fredenhagen states for quantum fields on curved spacetimesPhD DissertationUniversity of York, United Kingdom(available at: https://etheses.whiterose.ac.uk/23631)
[8] Sorkin, R. D., From Green function to quantum field, Int. J. Geom. Methods Mod. Phys., 14, 2017 · Zbl 1373.81269 · doi:10.1142/S0219887817400072
[9] Minz, C2021Algebraic field theory on causal sets: local structures and quantization methodsPhD DissertationUniversity of York, United Kindgom(available at: https://etheses.whiterose.ac.uk/29866)
[10] Dable-Heath, E.; Fewster, C. J.; Rejzner, K.; Woods, N., Algebraic classical and quantum field theory on causal sets, Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.065013
[11] Schlichenmaier, M., Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results, Adv. Math. Phys., 2010, 2010 · Zbl 1207.81049 · doi:10.1155/2010/927280
[12] Moretti, V., Spectral Theory and Quantum Mechanics: With an Introduction to the Algebraic Formulation, vol 64, 2013, Springer · Zbl 1365.81001
[13] Landsman, N. P., Mathematical Topics Between Classical and Quantum Mechanics, 1998, Springer
[14] Dixmier, J., Les C*-algèbres et Leurs Représentations, vol 29, 1964, Gauthier-Villars · Zbl 0152.32902
[15] Dixmier, J., C*-Algebras, vol 15, 1977, North-Holland, Elsevier · Zbl 0372.46058
[16] Kirchberg, E.; Wassermann, S., Operations on continuous bundles of C*-algebras, Math. Ann., 303, 677-97, 1995 · Zbl 0835.46057 · doi:10.1007/BF01461011
[17] Johnston, S., Quantum fields on causal sets, PhD Dissertation, 2010, Imperial College London, United Kingdom
[18] Dereziński, J.; Gérard, C., Mathematics of Quantization and Quantum Fields, 2013, Cambridge University Press · Zbl 1271.81004
[19] Ali, S. T.; Engliš, M., Quantization methods: a guide for physicists and analysts, Rev. Math. Phys., 17, 391-490, 2005 · Zbl 1075.81038 · doi:10.1142/S0129055X05002376
[20] Bordemann, M.; Meinrenken, E.; Schlichenmaier, M., Toeplitz quantization of Kähler manifolds and gl(N), \(N\to\operatorname{\infty}\) limits, Commun. Math. Phys., 165, 281-96, 1994 · Zbl 0813.58026 · doi:10.1007/BF02099772
[21] Karabegov, A. V.; Schlichenmaier, M., Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math., 2001, 49-76, 2001 · Zbl 0997.53067 · doi:10.1515/crll.2001.086
[22] De Monvel, L. B.; Guillemin, V., The Spectral Theory of Toeplitz Operators (Annals of Mathematics Studies, vol 99, 1981, Princeton University Press · Zbl 0469.47021
[23] Ioos, L.; Kaminker, V.; Polterovich, L.; Shmoish, D., Spectral aspects of the Berezin transform, Ann. Henri Lebesgue, 2020, 1343-87, 2020 · Zbl 1458.53091 · doi:10.5802/ahl.63
[24] Berezin, F. A., Covariant and contravariant symbols of operators, Mathematics of the USSR-Izvestiya, 6, 1117-51, 1972 · Zbl 0259.47004 · doi:10.1070/IM1972v006n05ABEH001913
[25] Guillemin, V.; Uribe, A., The Laplace operator on the N-th tensor power of a line bundle: eigenvalues which are uniformly bounded in N, Asymptot. Anal., 1, 105-13, 1988 · Zbl 0649.53026 · doi:10.3233/ASY-1988-1202
[26] Borthwick, D.; Uribe, A., Almost complex structures and geometric quantization, Math. Res. Lett., 3, 845-61, 1996 · Zbl 0872.58030 · doi:10.4310/MRL.1996.v3.n6.a12
[27] Ma, X.; Marinescu, G., Generalized Bergman kernels on symplectic manifolds, Adv. Math., 217, 1756-815, 2008 · Zbl 1141.58018 · doi:10.1016/j.aim.2007.10.008
[28] Ma, X.; Marinescu, G., Toeplitz operators on symplectic manifolds, J. Geom. Anal., 18, 565-611, 2008 · Zbl 1152.81030 · doi:10.1007/s12220-008-9022-2
[29] Kordyukov, Y. A.; Ma, X.; Marinescu, G., Generalized Bergman kernels on symplectic manifolds of bounded geometry, Commun. PDE, 44, 1037-71, 2019 · Zbl 1425.58016 · doi:10.1080/03605302.2019.1611849
[30] Ma, X.; Marinescu, G., The spin^c Dirac operator on high tensor powers of a line bundle, Math. Z., 240, 651-64, 2002 · Zbl 1027.58025 · doi:10.1007/s002090100393
[31] Ma, X.; Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels (Progress in Mathematics vol 254), 2007, Birkhäuser Verlag · Zbl 1135.32001
[32] Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R. D., Space-time as a causal set, Phys. Rev. Lett., 59, 521-24, 1987 · doi:10.1103/PhysRevLett.59.521
[33] Araki, H., On quasifree states of CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci., 6, 385-442, 1970 · Zbl 0227.46061 · doi:10.2977/prims/1195193913
[34] Finster, F.; Murro, S.; Röken, C., The fermionic projector in a time-dependent external potential: mass oscillation property and Hadamard states, J. Math. Phys., 57, 2016 · Zbl 1345.81033 · doi:10.1063/1.4954806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.