×

Classical axisymmetric gravity in real Ashtekar variables. (English) Zbl 1475.83010

Summary: We formulate axisymmetric general relativity in terms of real Ashtekar-Barbero variables. We study the constraints and equations of motion and show how the Kerr, Schwarzschild and Minkowski solutions arise. We also discuss boundary conditions. This opens the possibility of a midisuperspace quantization using loop quantum gravity techniques for spacetimes with axial symmetry and time dependence.

MSC:

83C10 Equations of motion in general relativity and gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C45 Quantization of the gravitational field

References:

[1] Ashtekar A and Singh P 2011 Class. Quantum Grav.28 213001 · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[2] Gambini R, Olmedo J and Pullin J 2014 Class. Quantum Grav.31 095009 · Zbl 1291.83105 · doi:10.1088/0264-9381/31/9/095009
[3] Gambini R, Capurro E M and Pullin J 2015 Phys. Rev. D 91 084006 · doi:10.1103/PhysRevD.91.084006
[4] Krasnov K 1999 Class. Quantum Grav.16 L15-8 · Zbl 0934.83035 · doi:10.1088/0264-9381/16/2/018
[5] Bojowald M 2000 (arxiv:gr-qc/0008054)
[6] Pérez A and Pranzetti D 2011 Entropy13 744-77 · Zbl 1229.83053 · doi:10.3390/e13040744
[7] Bianchi E 2011 Class. Quantum Grav.28 114006 · Zbl 1219.83076 · doi:10.1088/0264-9381/28/11/114006
[8] Frodden E, Pérez A, Pranzetti D and Röken C 2014 Gen. Relativ. Gravit.46 1828 · Zbl 1308.83092 · doi:10.1007/s10714-014-1828-6
[9] Ben Achour J, Noui K and Pérez A 2016 J. High Energy Phys.JHEP08(2016) 149 · Zbl 1390.83166 · doi:10.1007/JHEP08(2016)149
[10] Röken C 2017 Gen. Relativ. Gravit.49 114 · Zbl 1380.83030 · doi:10.1007/s10714-017-2251-6
[11] Husain V and Pullin J 1990 Mod. Phys. Lett. A 5 733 · Zbl 1020.83560 · doi:10.1142/S0217732390000834
[12] Neville D E 2015 Phys. Rev. D 92 044006 · doi:10.1103/PhysRevD.92.044006
[13] Hinterleitner F and Major S 2012 Class. Quantum Grav.29 065019 · Zbl 1238.83028 · doi:10.1088/0264-9381/29/6/065019
[14] Husain V and Smolin L 1989 Nucl. Phys. B 327 205 · doi:10.1016/0550-3213(89)90292-7
[15] Elizaga Navascués B, Martín-Benito M and Mena Marugán G A 2016 Int. J. Mod. Phys. D 25 1642007 · Zbl 1344.83057 · doi:10.1142/S0218271816420074
[16] Benguria R, Cordero P and Teitelboim C 1997 Nucl. Phys. B 122 61 · doi:10.1016/0550-3213(77)90426-6
[17] Wiltshire D, Visser M and Scott S 2009 The Kerr Spacetime: Rotation Black Holes in General Relativity (Cambridge: Cambridge University Press)
[18] Chandrasekhar S 1998 The Mathematical Theory of Black Holes (Oxford: Oxford University Press) · Zbl 0912.53053
[19] Thiemann T 1995 Class. Quantum Grav.12 181-98 · doi:10.1088/0264-9381/12/1/016
[20] Campiglia M 2015 Class. Quantum Grav.32 145011 · Zbl 1470.83008 · doi:10.1088/0264-9381/32/14/145011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.