×

Banach spaces which are isometric to subspaces of \(c_0(\Gamma)\). (English) Zbl 1482.46007

Characterizing those Banach spaces which can be found as subspaces of \(c_0\) is a long-standing problem in the mathematical literature; see, for instance, [S. A. Argyros et al., Mathematika 62, No. 3, 685–700 (2016; Zbl 1359.46005); G. Godefroy et al., Geom. Funct. Anal. 10, No. 4, 798–820 (2000; Zbl 0974.46023)]. In this article the authors focus on the isometric characterization of these spaces in terms of their extremal structure. One of the main results of the paper is the following:
{Theorem.} Suppose that \(X\) is a separable Banach space. Then the following statements are equivalent:
1.
\(X\) is isometric to a subspace of \(c_0\).
2.
The set of all extreme points of \(B_{X^*}\) is a weak*-null sequence in \(X^*\).
3.
The set of all Gateâux derivatives of the norm \(\|\cdot \|\) of \(X\) is a weak*-null sequence.
4.
The set of all Fréchet derivatives of the norm \(\|\cdot \|\) of \(X\) is a weak*-null sequence and a boundary for \(X\).
5.
There is a weak*-null \(1\)-norming sequence in \(X^*\).

Notice that some of the equivalences of the previous theorem might belong to the folklore; see, e.g., Proposition III.1 in [G. Godefroy, Extr. Math. 16, No. 1, 1–25 (2001; Zbl 0986.46009)]. The authors also prove several properties of subspaces of \(c_0\) and deal with the nonseparable setting, i.e., they also study subspaces of \(c_0(\Gamma)\) for some uncountable set \(\Gamma\), providing several characterizations of such spaces.

MSC:

46B04 Isometric theory of Banach spaces
46B20 Geometry and structure of normed linear spaces
46B25 Classical Banach spaces in the general theory
46B26 Nonseparable Banach spaces
Full Text: DOI

References:

[1] Aharoni, I., Every separable metric space is Lipschitz equivalent to a subset of c_0, Israel J. Math., 19, 284-291 (1974) · Zbl 0303.46012 · doi:10.1007/BF02757727
[2] Amir, D.; Lindenstrauss, J., The structure of weakly compact sets in Banach spaces, Ann. of Math., 88, 2, 35-46 (1968) · Zbl 0164.14903 · doi:10.2307/1970554
[3] Assouad, P., Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dans c_0. (Israel J. Math., 19, 284-291 (1974)), Israel J. Math., 31, 1, 97-100 (1978) · Zbl 0387.54003 · doi:10.1007/BF02761384
[4] Baudier, F.; Lancien, G.; Schlumprecht, Th, The coarse geometry of Tsirelson’s space and applications, J. Amer. Math. Soc., 31, 3, 699-717 (2018) · Zbl 1396.46020 · doi:10.1090/jams/899
[5] Chen, X.; Wang, Q.; Yu, G., The coarse Novikov conjecture and Banach spaces with Property (H), J. Funct. Anal., 268, 9, 2754-2786 (2015) · Zbl 1335.46060 · doi:10.1016/j.jfa.2015.02.001
[6] Cheng, L.; Cheng, Q.; Luo, S., On super weak compactness of subsets and its equivalences in Banach spaces, J. Convex Anal., 25, 3, 899-926 (2018) · Zbl 1408.46014
[7] Corson, H. H.; Lindenstrauss, J., On weakly compact subsets of Banach spaces, Proc. Amer. Math. Soc., 17, 407-412 (1966) · Zbl 0186.44703 · doi:10.1090/S0002-9939-1966-0199669-9
[8] Dowling, P. N.; Turentt, B., Lindenstrauss-Phelps spaces and the optimality of a theorem of Fonf, J. Nonlinear Convex Anal., 17, 2339-2342 (2016) · Zbl 1366.46009
[9] Dutrieux, Y.; Lancien, G., Isometric embeddings of compact spaces into Banach spaces, J. Funct. Anal., 255, 2, 494-501 (2008) · Zbl 1163.46004 · doi:10.1016/j.jfa.2008.04.002
[10] Fabian, M., Gâteaux Differentiability of Convex Functions and Topology, Weak Asplund Spaces (1997), New York: A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York · Zbl 0883.46011
[11] Fabian, M.; González, A.; Zizler, V., Flat sets, ℓ_p-generating and fixing c_0 in the nonseparable setting, J. Aust. Math. Soc., 87, 2, 197-210 (2009) · Zbl 1194.46030 · doi:10.1017/S1446788709000068
[12] Fonf, V. P., A property of Lindenstrauss-Phelps spaces, Funktsional. Anal. i Prilozhen., 13, 1, 79-80 (1979) · Zbl 0426.46012 · doi:10.1007/BF01076450
[13] Fonf, V. P., Some properties of polyhedral Banach spaces, Funktsional. Anal. i Prilozhen., 14, 4, 89-90 (1980) · Zbl 0454.46016
[14] Godefroy, G.; Kalton, N. J.; Lancien, G., On subspaces of c_0 and extensions of operators into C(K)-spaces, Quart. J. Math (Oxford), 52, 313-328 (2001) · Zbl 1016.46012 · doi:10.1093/qjmath/52.3.313
[15] Kalton, N. J.; Lancien, G., Best constants for Lipschitz embeddings of metric spaces into c_0, Fund. Math., 199, 3, 249-272 (2008) · Zbl 1153.46047 · doi:10.4064/fm199-3-4
[16] Lindentrauss, J.; Phelps, R. R., Extreme point properties of convex bodies in reflexive Banach spaces, Isreal J. Math., 6, 1, 39-48 (1968) · Zbl 0157.43802 · doi:10.1007/BF02771604
[17] Lindentrauss, J.; Preiss, D., On Fréchet differentiability of Lipschitz maps between Banach spaces, Ann. of Math., 157, 1, 257-288 (2003) · Zbl 1171.46313 · doi:10.4007/annals.2003.157.257
[18] Martìn, M., On proximinality of subspaces and the lineability of the set of norm-attaining functionals of Banach spaces, J. Funct. Anal., 278, 4, 108353 (2020) · Zbl 1435.46008 · doi:10.1016/j.jfa.2019.108353
[19] Nathansky, H. F.; Medina, F. N.; Bedoya, J. A V., Some comments about the paper “Lindestrauss-Phelps spaces and the optimality of a theorem of Fonf”, J. Nonlinear Convex Anal., 20, 103-109 (2019) · Zbl 1468.46023
[20] Pelant, X., Embeddings into c_0, Topology Appl., 57, 2-3, 259-269 (1994) · Zbl 0865.54025 · doi:10.1016/0166-8641(94)90053-1
[21] Phelps, R. R., Convex Functions, Monotone Operators and Differentiability (1989), Berlin: Springer-Verlag, Berlin · Zbl 0658.46035 · doi:10.1007/978-3-662-21569-2
[22] Rainwater, J., Local uniform convexity of Day’s norm on c_0(Γ), Proc. Amer. Math. Soc., 22, 335-339 (1969) · Zbl 0185.37602
[23] Read, C. J., Banach spaces with no proximinal subspaces of codimension 2, Israel J. Math., 223, 1, 493-504 (2018) · Zbl 1397.46010 · doi:10.1007/s11856-017-1627-3
[24] Rmoutil, M., Norm-attaining functionals need not contain 2-dimensional subspaces, J. Funct. Anal., 272, 3, 918-928 (2017) · Zbl 1359.46008 · doi:10.1016/j.jfa.2016.10.028
[25] Swift, A., On coarse Lipschitz embeddability into c_0(k), Fund. Math., 241, 1, 67-81 (2018) · Zbl 1409.46015 · doi:10.4064/fm383-3-2017
[26] Tsirelson, B. S., It is impossible to imbed ℓ_p or c_0 into an arbitrary Banach space, Funktsional. Anal. i Prilozhen., 8, 2, 57-60 (1974)
[27] Wu, C. X.; Cheng, L. X.; Yao, X. B., Characterizations of differentiability points of norms on c_0(Γ) and ℓ_∞(Γ), Northeast. Math. J., 12, 2, 153-160 (1996) · Zbl 0861.46012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.