×

Directional spreading of a viscous droplet on a conical fibre. (English) Zbl 1460.76040

Summary: If a droplet smaller than the capillary length is placed on a substrate with a conical shape, it spreads by itself in the direction of growing fibre radius. We describe this capillary spreading dynamics by developing a lubrication flow approximation on a cone and by using the perturbation method of matched asymptotic expansions. Our results show that the droplet appears to adopt a quasi-static shape and the predictions of the droplet shape and the spreading velocity from the two mathematical models are in excellent agreement. At the contact line regions, a large pressure gradient is generated by the mismatch between the equilibrium contact angle and the apparent contact angle that maintains the viscous flow. It is the conical shape of the substrate that breaks the front/rear droplet symmetry in terms of the apparent contact angle, which is larger at the thicker part of the cone than at its thinner part. Consequently, the droplet is predicted to move from the cone tip to its base, consistent with experimental observations.

MSC:

76A20 Thin fluid films

References:

[1] Batchelor, G. K.1967An Introduction to Fluid Dynamics. Cambridge University Press. · Zbl 0152.44402
[2] Bico, J. & Quéré, D.2002Self-propelling slugs. J. Fluid Mech.467, 101-127. · Zbl 1035.76012
[3] Blake, T.2006The physics of moving wetting lines. J. Colloid Interface Sci.299, 1-13.
[4] Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E.2009Wetting and spreading. Rev. Mod. Phys.81, 739.
[5] Brenner, M. P. & Bertozzi, A. L.1993Spreading of droplets on a solid surface. Phys. Rev. Lett.71, 593-596.
[6] Brochard, F.1989Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir5 (2), 432-438.
[7] Carlson, A., Bellani, G. & Amberg, G.2012Universality in dynamic wetting dominated by contact line friction. Phys. Rev. E85, 045302.
[8] Carlson, A., Do-Quang, M. & Amberg, G.2011Dissipation in rapid dynamic wetting. J. Fluid Mech.682, 213-240. · Zbl 1241.76419
[9] Carroll, B. J.1976The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. J. Colloid Interface Sci.57 (3), 488-495.
[10] Chan, T. S., Gueudré, T. & Snoeijer, J. H.2011Maximum speed of dewetting on a fiber. Phys. Fluids23, 112103.
[11] Chaudhury, M. K. & Whitesides, G. M.1992How to make water run uphill. Science256 (5063), 1539-1541.
[12] Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., Ambreen & Li, S.2018aBioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. J. Colloid Interface Sci.530, 274-281.
[13] Chen, H., Ran, T., Gan, Y., Zhou, J., Zhang, Y., Zhang, L., Zhang, D. & Jiang, L.2018bUltrafast water harvesting and transport in hierarchical microchannels. Nat. Mater.17 (10), 935-942.
[14] Chen, J.-D. & Wada, N.1989Wetting dynamics near the edge of a spreading drop. Phys. Rev. Lett.62, 3050-3053.
[15] Cox, R. G.1986The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech.168, 169-194. · Zbl 0597.76102
[16] Dos Santos, F. D. & Ondarçuhu, T.1995Free-running droplets. Phys. Rev. Lett.75, 2972-2975.
[17] Duez, C., Ybert, C., Clanet, C. & Bocquet, L.2007Making a splash with water repellency. Nat. Phys.3, 180-183.
[18] Duprat, C., Bebee, A. Y., Protiere, S. & Stone, H. A.2012Wetting of flexible fibre arrays. Nature482, 510-513.
[19] Eggers, J.2004Hydrodynamic theory of forced dewetting. Phys. Rev. Lett.93, 094502.
[20] Eggers, J.2005aContact line motion for partially wetting fluids. Phys. Rev. E72, 061605.
[21] Eggers, J.2005bExistence of receding and advancing contact lines. Phys. Fluids17, 082106. · Zbl 1187.76135
[22] De Gennes, P.-G.1985Wetting: statics and dynamics. Rev. Mod. Phys.57, 827.
[23] Hocking, L. M.1983The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths36, 55-69. · Zbl 0507.76100
[24] Hocking, L. M. & Rivers, A. D.1982The spreading of a drop by capillary action. J. Fluid Mech.121, 425-442. · Zbl 0492.76101
[25] Johansson, P., Carlson, A. & Hess, B.2015Water-substrate physico-chemistry in wetting dynamics. J. Fluid Mech.781, 695-711. · Zbl 1359.76035
[26] Landau, L. D. & Levich, B. V.1942Dragging of a liquid by a moving plate. Acta Physicochim. USSR17, 42-54.
[27] Lauga, E., Brenner, M. P. & Stone, H. A.2008Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechanics (ed. Tropea, C., Foss, J. F. & Yarin, A.), pp. 1219-1240. Springer.
[28] Li, K., Ju, J., Xue, Z., Ma, J., Feng, L., Gao, S. & Jiang, L.2013Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun.4, 2276.
[29] Li, Y., He, L., Zhang, X., Zhang, N. & Tian, D.2017External-field-induced gradient wetting for controllable liquid transport: from movement on the surface to penetration into the surface. Adv. Mater.29 (45), 1703802.
[30] Li, Y. Q., Wu, H. A. & Wang, F. C.2016Stagnation of a droplet on a conical substrate determined by the critical curvature ratio. J. Phys. D: Appl. Phys.49 (8), 085304.
[31] Liu, C., Xue, Y., Chen, Y. & Zheng, Y.2015Effective directional self-gathering of drops on spine of cactus with splayed capillary arrays. Sci. Rep.5, 17757.
[32] Lorenceau, É. & Quéré, D.2004Drops on a conical wire. J. Fluid Mech.510, 29-45. · Zbl 1067.76511
[33] Moosavi, A. & Mohammadi, A.2011Dynamics of nanodroplets on wettability gradient surfaces. J. Phys.: Condens. Matter23 (8), 085004.
[34] Oron, A., Davis, S. H. & Bankoff, S. G.1997Long-scale evolution of thin liquid films. Rev. Mod. Phys.69, 931-980.
[35] Park, K.-C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J. C. & Aizenberg, J.2016Condensation on slippery asymmetric bumps. Nature531, 78-82.
[36] Pismen, L. M. & Thiele, U.2006Asymptotic theory for a moving droplet driven by a wettability gradient. Phys. Fluids18 (4), 042104.
[37] Press, W. H., Teukolski, S. A., Vetterling, W. T. & Flannery, B. P.2007Numerical Recipes: The Art of Scientific Computing. Cambridge University Press. · Zbl 1132.65001
[38] Qian, T., Wang, X.-P. & Sheng, P.2006A variational approach to moving contact line hydrodynamics. J. Fluid Mech.564, 333-360. · Zbl 1178.76296
[39] Savva, N. & Kalliadasis, S.2009Two-dimensional droplet spreading over topographical substrates. Phys. Fluids21 (9), 092102. · Zbl 1183.76456
[40] Sibley, D. N., Nold, A. & Kalliadasis, S.2015The asymptotics of the moving contact line: cracking an old nut. J. Fluid Mech.764, 445-462. · Zbl 1335.76012
[41] Snoeijer, J. H. & Andreotti, B.2013Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech.45, 269-292. · Zbl 1359.76320
[42] Snoeijer, J. H. & Eggers, J.2010Asymptotics of the dewetting rim. Phys. Rev. E82, 056314.
[43] Snoeijer, J. H., Ziegler, J., Andreotti, B., Fermigier, M. & Eggers, J.2008Thick films coating a plate withdrawn from a bath. Phys. Rev. Lett.100, 244502.
[44] Sumino, Y., Kitahata, H., Yoshikawa, K., Nagayama, M., Nomura, S.-I. M., Magome, N. & Mori, Y.2005Chemosensitive running droplet. Phys. Rev. E72, 041603.
[45] Tanner, L. H.1979The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys.12, 1473-1478.
[46] Voinov, O. V.1976 Hydrodynamics of wetting (in Russian). Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 76-84 (translation in Fluid Dyn. 11, 714-721).
[47] Wang, Q., Yao, X., Liu, H., Quéré, D. & Jiang, L.2015Self-removal of condensed water on the legs of water striders. Proc. Natl Acad. Sci. USA112 (30), 9247-9252.
[48] Wilson, S. D. R.1982The drag-out problem in film coating theory. J. Engng Maths16 (3), 209-221. · Zbl 0502.76053
[49] Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J. & Jiang, L.2010Directional water collection on wetted spider silk. Nature463, 640-643.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.