×

Three dimensional modeling of liquid droplet spreading on solid surface: an enriched finite element/level-set approach. (English) Zbl 07513801

Summary: A physically consistent approach is introduced to simulate dynamics of droplets in contact with solid substrates. The numerical method is developed by introducing the molecular-kinetic model within the framework of the level-set/enriched finite element method and including the theoretically resolved sub-elemental hydrodynamics. The level-set method is customized to comply fully with the model acquired for the moving contact-line. The consistency of the proposed method is verified by comparing the simulation results with the theoretical predictions. In order to further validate the method, the spreading of a droplet is numerically modeled and compared rigorously with the experimental data reported in the literature. The proposed method is also employed to capture the evolution of a droplet trapped in a conical pore. All test-cases are simulated on three-dimensional computational domains.

MSC:

76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
76Txx Multiphase and multicomponent flows

Software:

AMGCL

References:

[1] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E., Wetting and spreading, Rev. Mod. Phys., 81, 739-805 (2009)
[2] Baroud, C. N.; Willaime, H., Multiphase flows in microfluidics, C. R. Phys., 5, 547-555 (2004)
[3] Shui, L.; Eijkel, J. C.T.; van den Berg, A., Multiphase flow in microfluidic systems – control and applications of droplets and interfaces, Adv. Colloid Interface Sci., 133, 35-49 (2007)
[4] Culligan, K. A.; Wildenschild, D.; Christensen, B. S.B.; Gray, W. G.; Rivers, M. L., Pore-scale characteristics of multiphase flow in porous media: a comparison of air-water and oil-water experiments, Adv. Water Resour., 29, 227-238 (2006)
[5] Thompson, K. E., Pore-scale modeling of fluid transport in disordered fibrous materials, AIChE J., 48, 1369-1389 (2002)
[6] Zhu, X.; Sui, P.; Djilali, N., Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel, J. Power Sources, 181, 101-115 (2008)
[7] Andersson, M.; Beale, S. B.; Espinoza, M.; Wu, Z.; Lehnert, W., A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells, Appl. Energy, 180, 757-778 (2016)
[8] Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M.; Mukundan, R.; Owejan, J. P.; Pharoah, J. G.; Secanell, M.; Zenyuk, I. V., A critical review of modeling transport phenomena in polymer-electrolyte fuel cells, J. Electrochem. Soc., 161, F1254-F1299 (2014)
[9] Jarauta, A.; Ryzhakov, P., Challenges in computational modeling of two-phase transport in polymer electrolyte fuel cells flow channels: a review, Arch. Comput. Methods Eng., 25, 1027-1057 (2018)
[10] Snoeijer, J. H.; Andreotti, B., Moving contact lines: scales, regimes, and dynamical transitions, Annu. Rev. Fluid Mech., 45, 269-292 (2013) · Zbl 1359.76320
[11] Shikhmurzaev, Y. D., Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges, Eur. Phys. J. Spec. Top., 229, 1945-1977 (2020)
[12] Huh, C.; Scriven, L. E., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, 85-101 (1971)
[13] Dussan, E. B.; Davis, S. H., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech., 65, 71-95 (1974) · Zbl 0282.76004
[14] Hocking, L. M., A moving fluid interface, Part 2: the removal of the force singularity by a slip flow, J. Fluid Mech., 79, 209-229 (1977) · Zbl 0355.76023
[15] Hocking, L. M.; Rivers, A. D., The spreading of a drop by capillary action, J. Fluid Mech., 121, 425 (1982) · Zbl 0492.76101
[16] Thompson, P. A.; Robbins, M. O., Simulations of contact-line motion: slip and the dynamic contact angle, Phys. Rev. Lett., 63, 766 (1989)
[17] Qian, T.; Wang, X.-P.; Sheng, P., Power-law slip profile of the moving contact line in two-phase immiscible flows, Phys. Rev. Lett., 93, Article 094501 pp. (2004)
[18] Qian, T.; Wang, X.-P.; Sheng, P., Molecular hydrodynamics of the moving contact line in two-phase immiscible flows (2005), preprint
[19] Cox, R. G., The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech., 168, 169 (1986) · Zbl 0597.76102
[20] Zhang, P.; Mohseni, K., Theoretical model of a finite force at the moving contact line, Int. J. Multiph. Flow, 132, Article 103398 pp. (2020)
[21] Blake, T. D.; Haynes, J. M., Kinetics of liquid/liquid displacement, J. Colloid Interface Sci., 30, 421-423 (1969)
[22] Blake, T. D.; Clarke, A.; De Coninck, J.; de Ruijter, M. J., Contact angle relaxation during droplet spreading: comparison between molecular kinetic theory and molecular dynamics, Langmuir, 13, 2164-2166 (1997)
[23] de Ruijter, M. J.; Blake, T. D.; De Coninck, J., Dynamic wetting studied by molecular modeling simulations of droplet spreading, Langmuir, 15, 7836-7847 (1999)
[24] Petrov, J. G.; Ralston, J.; Schneemilch, M.; Hayes, R. A., Dynamics of partial wetting and dewetting in well-defined systems, J. Phys. Chem. B, 107, 1634-1645 (2003)
[25] Blake, T. D., The physics of moving wetting lines, J. Colloid Interface Sci., 299, 1-13 (2006)
[26] Seveno, D.; Vaillant, A.; Rioboo, R.; Adao, H.; Conti, J.; De Coninck, J., Dynamics of wetting revisited, Langmuir, 25, 13034-13044 (2009)
[27] de Ruijter, M. J.; De Coninck, J.; Blake, T. D.; Clarke, A.; Rankin, A., Contact angle relaxation during the spreading of partially wetting drops, Langmuir, 13, 7293-7298 (1997)
[28] Ranabothu, S. R.; Karnezis, C.; Dai, L. L., Dynamic wetting: hydrodynamic or molecular-kinetic?, J. Colloid Interface Sci., 288, 213-221 (2005)
[29] Mohammad Karim, A.; Davis, S. H.; Kavehpour, H. P., Forced versus spontaneous spreading of liquids, Langmuir, 32, 10153-10158 (2016)
[30] Ren, W.; Hu, D.; E, W., Continuum models for the contact line problem, Phys. Fluids, 22, Article 102103 pp. (2010) · Zbl 1308.76082
[31] Petrov, P.; Petrov, I., A combined molecular-hydrodynamic approach to wetting kinetics, Langmuir, 8, 1762-1767 (1992)
[32] Brochard-Wyart, F.; de Gennes, P. G., Dynamics of partial wetting, Adv. Colloid Interface Sci., 39, 1-11 (1992)
[33] de Ruijter, M. J.; De Coninck, J.; Oshanin, G., Droplet spreading: partial wetting regime revisited, Langmuir, 15, 2209-2216 (1999)
[34] de Ruijter, M. J.; Charlot, M.; Voué, M.; De Coninck, J., Experimental evidence of several time scales in drop spreading, Langmuir, 16, 2363-2368 (2000)
[35] Phan, C. M.; Nguyen, A. V.; Evans, G. M., Combining hydrodynamics and molecular kinetics to predict dewetting between a small bubble and a solid surface, J. Colloid Interface Sci., 296, 669-676 (2006)
[36] Fernández-Toledano, J.-C.; Blake, T. D.; De Coninck, J., Taking a closer look: a molecular-dynamics investigation of microscopic and apparent dynamic contact angles, J. Colloid Interface Sci., 587, 311-323 (2021)
[37] Qian, T.; Wang, X.-P.; Sheng, P., Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68, Article 016306 pp. (2003)
[38] Qian, T.; Wang, X.-P.; Sheng, P., A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564, 333 (2006) · Zbl 1178.76296
[39] Ren, W.; E, W., Boundary conditions for the moving contact line problem, Phys. Fluids, 19, Article 022101 pp. (2007) · Zbl 1146.76513
[40] Xu, X.; Di, Y.; Yu, H., Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines, J. Fluid Mech., 849, 805-833 (2018) · Zbl 1415.76666
[41] Ren, W.; Weinan, E., Derivation of continuum models for the moving contact line problem based on thermodynamic principles, Commun. Math. Sci., 9, 597-606 (2011) · Zbl 1414.76019
[42] Manservisi, S.; Scardovelli, R., A variational approach to the contact angle dynamics of spreading droplets, Comput. Fluids, 38, 406-424 (2009) · Zbl 1237.76145
[43] Guo, S.; Gao, M.; Xiong, X.; Wang, Y. J.; Wang, X.; Sheng, P.; Tong, P., Direct measurement of friction of a fluctuating contact line, Phys. Rev. Lett., 111, Article 026101 pp. (2013)
[44] Yamamoto, Y.; Ito, T.; Wakimoto, T.; Katoh, K., Numerical simulations of spontaneous capillary rise with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition, Int. J. Multiph. Flow, 51, 22-32 (2013)
[45] Zhang, J.; Yue, P., A level-set method for moving contact lines with contact angle hysteresis, J. Comput. Phys., Article 109636 pp. (2020) · Zbl 07506186
[46] Mahrous, E.; Jarauta, A.; Chan, T.; Ryzhakov, P.; Weber, A. Z.; Roy, R. V.; Secanell, M., A particle finite element-based model for droplet spreading analysis, Phys. Fluids, 32, Article 042106 pp. (2020)
[47] Zahedi, S.; Gustavsson, K.; Kreiss, G., A conservative level set method for contact line dynamics, J. Comput. Phys., 228, 6361-6375 (2009) · Zbl 1261.76042
[48] Jacqmin, D., Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57-88 (2000) · Zbl 0984.76084
[49] Yue, P.; Feng, J. J., Wall energy relaxation in the Cahn-Hilliard model for moving contact lines, Phys. Fluids, 23, Article 012106 pp. (2011) · Zbl 1308.76132
[50] Sui, Y.; Ding, H.; Spelt, P. D., Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech., 46, 97-119 (2014) · Zbl 1297.76177
[51] Weinstein, O.; Pismen, L., Scale dependence of contact line computations, Math. Model. Nat. Phenom., 3, 98-107 (2008) · Zbl 1337.76017
[52] Schönfeld, F.; Hardt, S., Dynamic contact angles in CFD simulations, Comput. Fluids, 38, 757-764 (2009) · Zbl 1242.76051
[53] Dupont, J.-B.; Legendre, D., Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys., 229, 2453-2478 (2010) · Zbl 1430.76159
[54] Sui, Y.; Spelt, P. D., An efficient computational model for macroscale simulations of moving contact lines, J. Comput. Phys., 242, 37-52 (2013) · Zbl 1311.76085
[55] Afkhami, S.; Zaleski, S.; Bussmann, M., A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys., 228, 5370-5389 (2009) · Zbl 1280.76029
[56] Yamamoto, Y.; Tokieda, K.; Wakimoto, T.; Ito, T.; Katoh, K., Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic-microscopic contact angle relation and generalized Navier boundary condition, Int. J. Multiph. Flow, 59, 106-112 (2014)
[57] Luo, J.; Hu, X. Y.; Adams, N. A., Curvature boundary condition for a moving contact line, J. Comput. Phys., 310, 329-341 (2016) · Zbl 1349.76872
[58] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[59] Chang, Y.-C.; Hou, T.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449-464 (1996) · Zbl 0847.76048
[60] Sussman, M.; Uto, S., A computational study of the spreading of oil underneath a sheet of ice, CAM Rep., 114, 146-159 (1998)
[61] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[62] Xu, J.-J.; Ren, W., A level-set method for two-phase flows with moving contact line and insoluble surfactant, J. Comput. Phys., 263, 71-90 (2014) · Zbl 1349.76554
[63] Jarauta, A.; Ryzhakov, P.; Secanell, M.; Waghmare, P. R.; Pons-Prats, J., Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas channel using an embedded Eulerian-Lagrangian approach, J. Power Sources, 323, 201-212 (2016)
[64] Ryzhakov, P. B.; Jarauta, A.; Secanell, M.; Pons-Prats, J., On the application of the PFEM to droplet dynamics modeling in fuel cells, Comput. Part. Mech., 4, 285-295 (2017)
[65] Hashemi, M. R.; Ryzhakov, P. B.; Rossi, R., An enriched finite element/level-set method for simulating two-phase incompressible fluid flows with surface tension, Comput. Methods Appl. Mech. Eng., 370, Article 113277 pp. (2020) · Zbl 1506.76078
[66] Buscaglia, G. C.; Ausas, R. F., Variational formulations for surface tension, capillarity and wetting, Comput. Methods Appl. Mech. Eng., 200, 3011-3025 (2011) · Zbl 1230.76047
[67] Cox, R. G., Inertial and viscous effects on dynamic contact angles, J. Fluid Mech., 357, 249-278 (1998) · Zbl 0908.76026
[68] Wörner, M.; Cai, X.; Alla, H.; Yue, P., A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox theory, Fluid Dyn. Res., 50, Article 035501 pp. (2018)
[69] Shikhmurzaev, Y. D., Spreading of drops on solid surfaces in a quasi-static regime, Phys. Fluids, 9, 266-275 (1997)
[70] Dussan, E. B., On the spreading of liquids on solid surfaces: static and dynamic contact lines, Annu. Rev. Fluid Mech., 11, 371-400 (1979)
[71] Young, T., An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond., 95, 65-87 (1805)
[72] Seveno, D.; Blake, T. D.; De Coninck, J., Young’s equation at the nanoscale, Phys. Rev. Lett., 111, Article 096101 pp. (2013)
[73] Pismen, L. M., Some singular errors near the contact line singularity, and ways to resolve both, Eur. Phys. J. Spec. Top., 197, 33 (2011)
[74] Sibley, D. N.; Savva, N.; Kalliadasis, S., Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system, Phys. Fluids, 24, Article 082105 pp. (2012)
[75] Zorrilla, R.; Larese, A.; Rossi, R., A modified Finite Element formulation for the imposition of the slip boundary condition over embedded volumeless geometries, Comput. Methods Appl. Mech. Eng., 353, 123-157 (2019) · Zbl 1441.76036
[76] Wei, Y.; Rame, E.; Walker, L. M.; Garoff, S., Dynamic wetting with viscous Newtonian and non-Newtonian fluids, J. Phys., Condens. Matter, 21, Article 464126 pp. (2009)
[77] Chen, L.; Yu, J.; Wang, H., Convex nanobending at a moving contact line: the missing mesoscopic link in dynamic wetting, ACS Nano, 8, 11493-11498 (2014)
[78] Codina, R.; Badia, S.; Baiges, J.; Principe, J., Variational multiscale methods in computational fluid dynamics, (Encyclopedia of Computational Mechanics (2018), Wiley Online Library), 1-28
[79] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[80] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 110, 325-342 (1993) · Zbl 0844.76048
[81] Trujillo, M. F.; Anumolu, L.; Ryddner, D., The distortion of the level set gradient under advection, J. Comput. Phys., 334, 81-101 (2017) · Zbl 1375.76199
[82] Groß, S.; Reichelt, V.; Reusken, A., A finite element based level set method for two-phase incompressible flows, Comput. Vis. Sci., 9, 239-257 (2006) · Zbl 1119.76042
[83] Min, C., On reinitializing level set functions, J. Comput. Phys., 229, 2764-2772 (2010) · Zbl 1188.65122
[84] Della Rocca, G.; Blanquart, G., Level set reinitialization at a contact line, J. Comput. Phys., 265, 34-49 (2014) · Zbl 1349.76599
[85] Elias, R. N.; Martins, M. A.; Coutinho, A. L., Simple finite element-based computation of distance functions in unstructured grids, Int. J. Numer. Methods Eng., 72, 1095-1110 (2007) · Zbl 1194.65145
[86] Tornberg, A.-K.; Engquist, B., A finite element based level-set method for multiphase flow applications, Comput. Vis. Sci., 3, 93-101 (2000) · Zbl 1060.76578
[87] Dadvand, P.; Rossi, R.; Oñate, E., An object-oriented environment for developing finite element codes for multi-disciplinary applications, Arch. Comput. Methods Eng., 17, 253-297 (2010) · Zbl 1360.76130
[88] Demidov, D., AMGCL: an efficient, flexible, and extensible algebraic multigrid implementation, Lobachevskii J. Math., 40, 535-546 (2019) · Zbl 1452.65426
[89] Lamb, H., Hydrodynamics (1924), University Press · JFM 50.0567.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.