×

The asymptotics of the moving contact line: cracking an old nut. (English) Zbl 1335.76012

Summary: For contact line motion where the full Stokes flow equations hold, full matched asymptotic solutions using slip models have been obtained for droplet spreading and more general geometries. These solutions to the singular perturbation problem in the slip length, however, all involve matching through an intermediate region that is taken to be separate from the outer-inner regions. Here, we show that the intermediate region is in fact an overlap region representing extensions of both the outer and the inner region, allowing direct matching to proceed. In particular, we investigate in detail how a previously seen result of the matching of the cubes of the free surface slope is justified in the lubrication setting. We also extend this two-region direct matching to the more general Stokes flow case, offering a new perspective on the asymptotics of the moving contact line problem.

MSC:

76A20 Thin fluid films

References:

[1] DOI: 10.1093/qjmam/36.1.55 · Zbl 0507.76100 · doi:10.1093/qjmam/36.1.55
[2] DOI: 10.1016/0021-9797(69)90411-1 · doi:10.1016/0021-9797(69)90411-1
[3] DOI: 10.1103/RevModPhys.57.827 · doi:10.1103/RevModPhys.57.827
[4] Abramowitz, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (1972) · Zbl 0543.33001
[5] DOI: 10.1063/1.2009007 · Zbl 1187.76135 · doi:10.1063/1.2009007
[6] DOI: 10.1103/PhysRevLett.93.094502 · doi:10.1103/PhysRevLett.93.094502
[7] DOI: 10.1016/S0893-9659(97)00036-0 · Zbl 0882.34001 · doi:10.1016/S0893-9659(97)00036-0
[8] DOI: 10.1017/S0022112009992679 · Zbl 1189.76074 · doi:10.1017/S0022112009992679
[9] DOI: 10.1063/1.868412 · Zbl 0843.76003 · doi:10.1063/1.868412
[10] DOI: 10.1007/BF01012963 · doi:10.1007/BF01012963
[11] DOI: 10.1103/PhysRevE.84.036305 · doi:10.1103/PhysRevE.84.036305
[12] DOI: 10.1063/1.4821193 · doi:10.1063/1.4821193
[13] DOI: 10.1137/1.9780898719598 · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[14] DOI: 10.1146/annurev-fluid-010313-141338 · doi:10.1146/annurev-fluid-010313-141338
[15] DOI: 10.1103/PhysRevLett.100.244502 · doi:10.1103/PhysRevLett.100.244502
[16] DOI: 10.1146/annurev-fluid-011212-140734 · Zbl 1359.76320 · doi:10.1146/annurev-fluid-011212-140734
[17] DOI: 10.1063/1.2171190 · doi:10.1063/1.2171190
[18] DOI: 10.1063/1.4742895 · doi:10.1063/1.4742895
[19] Sibley, J. Engng Maths (2014)
[20] DOI: 10.1140/epje/i2013-13026-y · doi:10.1140/epje/i2013-13026-y
[21] DOI: 10.1063/1.4821288 · doi:10.1063/1.4821288
[22] DOI: 10.1017/jfm.2013.521 · Zbl 1294.76099 · doi:10.1017/jfm.2013.521
[23] DOI: 10.1017/S0022112096004569 · Zbl 0887.76021 · doi:10.1017/S0022112096004569
[24] DOI: 10.1007/s10665-010-9426-4 · Zbl 1398.76014 · doi:10.1007/s10665-010-9426-4
[25] DOI: 10.1017/S0022112007004910 · Zbl 1125.76024 · doi:10.1017/S0022112007004910
[26] DOI: 10.1017/S0022112097008112 · Zbl 0908.76026 · doi:10.1017/S0022112097008112
[27] DOI: 10.1063/1.3223628 · Zbl 1183.76456 · doi:10.1063/1.3223628
[28] DOI: 10.1017/S0022112086000332 · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[29] DOI: 10.1021/la00043a013 · doi:10.1021/la00043a013
[30] DOI: 10.1063/1.4736531 · doi:10.1063/1.4736531
[31] DOI: 10.1103/PhysRevLett.103.114501 · doi:10.1103/PhysRevLett.103.114501
[32] Chan, Phys. Fluids 23 (2011)
[33] DOI: 10.1016/0021-9797(71)90188-3 · doi:10.1016/0021-9797(71)90188-3
[34] DOI: 10.1103/RevModPhys.81.739 · doi:10.1103/RevModPhys.81.739
[35] DOI: 10.1017/S0022112082001979 · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[36] DOI: 10.1146/annurev.fluid.30.1.139 · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.