×

Comparison of Navier-Stokes simulations with long-wave theory: study of wetting and dewetting. (English) Zbl 1320.76032

Summary: The classical long-wave theory (also known as lubrication approximation) applied to fluid spreading or retracting on a solid substrate is derived under a set of assumptions, typically including small slopes and negligible inertial effects. In this work, we compare the results obtained by using the long-wave model and by simulating directly the full two-phase Navier-Stokes equations employing a volume-of-fluid method. In order to isolate the influence of the small slope assumption inherent in the long-wave theory, we present a quantitative comparison between the two methods in the regime where inertial effects and the influence of gas phase are negligible. The flow geometries that we consider include wetting and dewetting drops within a broad range of equilibrium contact angles in planar and axisymmetric geometries, as well as liquid rings. For perfectly wetting spreading drops we find good quantitative agreement between the models, with both of them following rather closely Tanner’s law. For partially wetting drops, while in general we find good agreement between the two models for small equilibrium contact angles, we also uncover differences which are particularly evident in the initial stages of evolution, for retracting drops, and when additional azimuthal curvature is considered. The contracting rings are also found to evolve differently for the two models, with the main difference being that the evolution occurs on the faster time scale when the long-wave model is considered, although the ring shapes are very similar between the two models.{
©2013 American Institute of Physics}

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D08 Lubrication theory
76T99 Multiphase and multicomponent flows

Software:

NASA-VOF2D

References:

[1] Cox, R., The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech., 168, 169 (1986) · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[2] Shikhmurzaev, Y., Moving contact lines in liquid/liquid/solid systems, J. Fluid Mech., 334, 211 (1997) · Zbl 0887.76021 · doi:10.1017/S0022112096004569
[3] Spelt, P. D., A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, J. Comput. Phys., 207, 389 (2005) · Zbl 1213.76127 · doi:10.1016/j.jcp.2005.01.016
[4] Afkhami, S.; Zaleski, S.; Bussmann, M., A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys., 228, 5370 (2009) · Zbl 1280.76029 · doi:10.1016/j.jcp.2009.04.027
[5] Sprittles, J. E.; Shikhmurzaev, Y. D., Finite element framework for describing dynamic wetting phenomena, Int. J. Numer. Methods Fluids, 68, 1257 (2012) · Zbl 1309.76132 · doi:10.1002/fld.2603
[6] Sussman, M., A method for overcoming the surface tension time step constraint in multiphase flows II, Int. J. Numer. Methods Fluids, 68, 1343 (2012) · Zbl 1427.76223 · doi:10.1002/fld.2557
[7] Sui, Y.; Spelt, P. D., An efficient computational model for macroscale simulations of moving contact lines, J. Comput. Phys., 242, 37 (2013) · Zbl 1311.76085 · doi:10.1016/j.jcp.2013.02.005
[8] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E., Wetting and spreading, Rev. Mod. Phys., 81, 739 (2009) · doi:10.1103/RevModPhys.81.739
[9] Oron, A.; Davis, S. H.; Bankoff, S. G., Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69, 931 (1997) · doi:10.1103/RevModPhys.69.931
[10] Craster, R. V.; Matar, O. K., Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81, 1131 (2009) · doi:10.1103/RevModPhys.81.1131
[11] Goodwin, R.; Homsy, G. M., Viscous flow down a slope in the vicinity of a contact line, Phys. Fluids A, 3, 515 (1991) · Zbl 0735.76022 · doi:10.1063/1.858113
[12] Fowlkes, J.; Kondic, L.; Diez, J.; Wu, Y.; Rack, P., Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films, Nano Lett., 11, 2478 (2011) · doi:10.1021/nl200921c
[13] Voinov, O., Hydrodynamics of wetting, Fluid Dyn., 11, 714 (1976) · doi:10.1007/BF01012963
[14] Tanner, L., Spreading of silicone oil drops on horizontal surfaces, J. Phys. D, 12, 1473 (1979) · doi:10.1088/0022-3727/12/9/009
[15] Wu, Y.; Fowlkes, J.; Rack, P.; Diez, J.; Kondic, L., On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: competing liquid-phase instability and transport mechanisms, Langmuir, 26, 11972 (2010) · doi:10.1021/la1013818
[16] Wu, Y.; Fowlkes, J.; Roberts, N.; Diez, J.; Kondic, L.; González, A.; Rack, P., Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on \(SiO_2\), Langmuir, 27, 13314 (2011) · doi:10.1021/la203165v
[17] Afkhami, S.; Kondic, L., Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting, Phys. Rev. Lett., 111, 034501 (2013) · doi:10.1103/PhysRevLett.111.034501
[18] González, A. G.; Diez, J. A.; Kondic, L., Stability of a liquid ring on a substrate, J. Fluid Mech., 718, 246 (2013) · Zbl 1284.76176 · doi:10.1017/jfm.2012.607
[19] Dussan, E. B. V., The moving contact line: the slip boundary condition, J. Fluid Mech., 77, 665 (1976) · Zbl 0341.76010 · doi:10.1017/S0022112076002838
[20] Greenspan, H. P., On the motion of a small viscous droplet that wets a surface, J. Fluid Mech., 84, 125 (1978) · Zbl 0373.76040 · doi:10.1017/S0022112078000075
[21] Hocking, L.; Rivers, A., The spreading of a drop by capillary action, J. Fluid Mech., 121, 425 (1982) · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[22] Haley, P. J.; Miksis, M. J., The effect of the contact line on droplet spreading, J. Fluid Mech., 223, 57 (1991) · Zbl 0719.76071 · doi:10.1017/S0022112091001337
[23] Huh, C.; Scriven, L. E., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, 85 (1971) · doi:10.1016/0021-9797(71)90188-3
[24] Diez, J.; Kondic, L., On the breakup of fluid films of finite and infinite extent, Phys. Fluids, 19, 072107 (2007) · Zbl 1182.76204 · doi:10.1063/1.2749515
[25] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335 (1992) · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[26] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838 (2009) · Zbl 1280.76020 · doi:10.1016/j.jcp.2009.04.042
[27] Popinet, S., “The Gerris flow solver,” (2012), Version 1.3.2.
[28] Perazzo, C. A.; Gratton, J., Navier-Stokes solutions for parallel flow in rivulets on an inclined plane, J. Fluid Mech., 507, 367 (2004) · Zbl 1065.76043 · doi:10.1017/S0022112004008791
[29] Israelachvili, J. N., Intermolecular and Surface Forces (1992)
[30] Schwartz, L.; Eley, R., Simulation of droplet motion on low-energy and heterogeneous surfaces, J. Colloid Interface Sci., 202, 173 (1998) · doi:10.1006/jcis.1998.5448
[31] Münch, A.; Wagner, B., Contact-line instability of dewetting thin films, Physica D, 209, 178 (2005) · Zbl 1077.76027 · doi:10.1016/j.physd.2005.06.027
[32] Gomba, J. M.; Homsy, G. M., Analytical solutions for partially wetting two-dimensional droplets, Langmuir, 25, 5684 (2009) · doi:10.1021/la804335a
[33] Diez, J.; Kondic, L., Computing three-dimensional thin film flows including contact lines, J. Comput. Phys., 183, 274 (2002) · Zbl 1047.76070 · doi:10.1006/jcph.2002.7197
[34] Eggers, J., Toward a description of contact line motion at higher capillary numbers, Phys. Fluids, 16, 3491 (2004) · Zbl 1187.76134 · doi:10.1063/1.1776071
[35] Barenblatt, G., Scaling, Self-Similarity, and Intermediate Asymptotics (1996) · Zbl 0907.76002
[36] Diez, J.; Gratton, R.; Thomas, L.; Marino, B., Laplace pressure driven drop spreading, Phys. Fluids, 6, 24 (1994) · Zbl 0838.76022 · doi:10.1063/1.868072
[37] Gratton, R.; Diez, J. A.; Thomas, L. P.; Marino, B.; Betelú, S., Quasi-self-similarity for wetting drops, Phys. Rev. E, 53, 3563 (1996) · doi:10.1103/PhysRevE.53.3563
[38] Diez, J.; Kondic, L.; Bertozzi, A. L., Global models for moving contact lines, Phys. Rev. E, 63, 011208 (2000) · doi:10.1103/PhysRevE.63.011208
[39] Renardy, M.; Renardy, Y.; Li, J., Numerical simulation of moving contact line problems using a volume-of-fluid method, J. Comput. Phys., 171, 243 (2001) · Zbl 1044.76051 · doi:10.1006/jcph.2001.6785
[40] Snoeijer, J., Free-surface flows with large slope: beyond lubrication theory, Phys. Fluids, 18, 021701 (2006) · doi:10.1063/1.2171190
[41] Scardovelli, R.; Zaleski, S., Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys., 164, 228 (2000) · Zbl 0993.76067 · doi:10.1006/jcph.2000.6567
[42] Bell, J.; Colella, P.; Glaz, H., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 257 (1989) · Zbl 0681.76030 · doi:10.1016/0021-9991(89)90151-4
[43] Francois, M.; Cummins, S.; Dendy, E.; Kothe, D.; Sicilian, J.; Williams, M., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys., 213, 141 (2006) · Zbl 1137.76465 · doi:10.1016/j.jcp.2005.08.004
[44] Afkhami, S.; Bussmann, M., Height functions for applying contact angles to 2D VOF simulations, Int. J. Numer. Methods Fluids, 57, 453 (2008) · Zbl 1206.76040 · doi:10.1002/fld.1651
[45] Sussman, M., A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, J. Comput. Phys., 187, 110 (2003) · Zbl 1047.76085 · doi:10.1016/S0021-9991(03)00087-1
[46] Torrey, M., Cloutman, L., Mjolsness, R., and Hirt, C., “NASA-VOF2D: a computer program for incompressible flows with free surfaces,” NASA STI/Recon Technical Report N (1985), Vol. 86, p. 30116.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.