×

Drop spreading and drifting on a spatially heterogeneous film: capturing variability with asymptotics and emulation. (English) Zbl 1408.76042

Summary: A liquid drop spreading over a thin heterogeneous precursor film (such as an inhaled droplet on the mucus-lined wall of a lung airway) will experience perturbations in shape and location as its advancing contact line encounters regions of low or high film viscosity. Prior work on spatially one-dimensional spreading over a precursor film having a random viscosity field [F. Xu and O. E. Jensen, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 472, No. 2194, Article ID 20160270, 20 p. (2016; Zbl 1371.76016)] has demonstrated how viscosity fluctuations are swept into a narrow region behind the drop’s effective contact line, where they can impact drop dynamics. In this paper, we investigate two-dimensional drops, seeking to understand the relationship between the statistical properties of the precursor film and those of the spreading drop. Assuming the precursor film is much thinner than the drop and viscosity fluctuations are weak, we use asymptotic methods to derive explicit predictions for the mean and variance of drop area and the drop’s lateral drift. For larger film variability, we use Gaussian process emulation to estimate the variance of outcomes from a restricted set of simulations. Stochastic drift of the droplet is predicted to be the greatest when the initial drop diameter is comparable to the correlation length of viscosity fluctuations.

MSC:

76A20 Thin fluid films

Citations:

Zbl 1371.76016

References:

[1] Thornton, DJ; Rousseau, K; McGuckin, MA, Structure and function of the polymeric mucins in airways mucus, Annu Rev Physiol, 70, 459-486, (2008) · doi:10.1146/annurev.physiol.70.113006.100702
[2] Lai, SK; Wang, Y-Y; Wirtz, D; Hanes, J, Micro-and macrorheology of mucus, Adv Drug Deliv Rev, 61, 86-100, (2009) · doi:10.1016/j.addr.2008.09.012
[3] Jonathan, H; Widdicombe, JH; Wine, JJ, Airway gland structure and function, Physiol Rev, 95, 1241-1319, (2015) · doi:10.1152/physrev.00039.2014
[4] Sims, DE; Horne, MM, Heterogeneity of the composition and thickness of tracheal mucus in rats, Am J Physiol, 273, l1036-l1041, (1997) · doi:10.1152/ajpcell.1997.273.5.C1679
[5] Kirkham, S; Sheehan, JK; Knight, D; Richardson, PS; Thornton, DJ, Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins muc5ac and muc5b, Biochem J, 361, 537-546, (2002) · doi:10.1042/bj3610537
[6] Levy, R; Hill, DB; Forest, MG; Grotberg, JB, Pulmonary fluid flow challenges for experimental and mathematical modeling, Integr Comp Biol, 54, 985-1000, (2014) · doi:10.1093/icb/icu107
[7] Ostedgaard, LS; Moninger, TO; McMenimen, JD; Sawin, NM; Parker, CP; Thornell, IM; Powers, LS; Gansemer, ND; Bouzek, DC; Cook, DP; Meyerholz, DK; Abou Alaiwa, MH; Stoltz, DA; Welsh, MJ, Gel-forming mucins form distinct morphologic structures in airways, Proc Natl Acad Sci, 114, 6842-6847, (2017)
[8] Kesimer, M; Ehre, C; Burns, KA; William Davis, C; Sheehan, JK; Pickles, RJ, Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways, Mucosal Immunol, 6, 379-392, (2013) · doi:10.1038/mi.2012.81
[9] Chatelin, R; Poncet, P, A parametric study of mucociliary transport by numerical simulations of 3d non-homogeneous mucus, J Biomech, 49, 1772-1780, (2016) · doi:10.1016/j.jbiomech.2016.04.009
[10] Xu, F; Jensen, OE, Drop spreading with random viscosity, Proc R Soc A, 472, 20160270, (2016) · Zbl 1371.76016 · doi:10.1098/rspa.2016.0270
[11] Cox, RG, The spreading of a liquid on a rough solid surface, J Fluid Mech, 131, 1-26, (1983) · Zbl 0527.76102 · doi:10.1017/S0022112083001214
[12] Miksis, MJ; Davis, SH, Slip over rough and coated surfaces, J Fluid Mech, 273, 125-139, (1994) · Zbl 0814.76036 · doi:10.1017/S0022112094001874
[13] Savva, N; Kalliadasis, S; Pavliotis, GA, Two-dimensional droplet spreading over random topographical substrates, Phys Rev Lett, 104, 084501, (2010) · doi:10.1103/PhysRevLett.104.084501
[14] Hocking, LM, The spreading of a thin drop by gravity and capillarity, Q J Mech Appl Math, 36, 55-69, (1983) · Zbl 0507.76100 · doi:10.1093/qjmam/36.1.55
[15] King, JR; Bowen, M, Moving boundary problems and non-uniqueness for the thin film equation, Eur J Appl Math, 12, 321-356, (2001) · Zbl 0985.35113 · doi:10.1017/S0956792501004405
[16] Hocking, LM; Rivers, AD, The spreading of a drop by capillary action, J Fluid Mech, 121, 425-442, (1982) · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[17] Savva, N; Kalliadasis, S, Two-dimensional droplet spreading over topographical substrates, Phys Fluids, 21, 092102, (2009) · Zbl 1183.76456 · doi:10.1063/1.3223628
[18] Sibley, DN; Nold, A; Savva, N; Kalliadasis, S, A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading, J Eng Math, 94, 19-41, (2015) · Zbl 1360.76037 · doi:10.1007/s10665-014-9702-9
[19] Kersting K, Plagemann C, Pfaff P, Wolfram B (2007) Most likely heteroscedastic Gaussian process regression. In: Proceedings of the 24th international conference machine learning, pp 393-400
[20] Filoche, M; Tai, C-F; Grotberg, JB, Three-dimensional model of surfactant replacement therapy, Proc Natl Acad Sci, 112, 9287-9292, (2015) · doi:10.1073/pnas.1504025112
[21] Kim, J; O’Neill, JD; Dorrello, NV; Bacchetta, M; Vunjak-Novakovic, G, Targeted delivery of liquid microvolumes into the lung, Proc Natl Acad Sci, 112, 11530-11535, (2015) · doi:10.1073/pnas.1512613112
[22] Khanal, A; Sharma, R; Corcoran, TE; Garoff, S; Przybycien, TM; Tilton, RD, Surfactant driven post-deposition spreading of aerosols on complex aqueous subphases. 1: high deposition flux representative of aerosol delivery to large airways, J Aerosol Med Pulmon Drug Deliv, 28, 382-393, (2015) · doi:10.1089/jamp.2014.1168
[23] Sharma, R; Khanal, A; Corcoran, TE; Garoff, S; Przybycien, TM; Tilton, RD, Surfactant driven post-deposition spreading of aerosols on complex aqueous subphases. 2: low deposition flux representative of aerosol delivery to small airways, J Aerosol Med Pulmon Drug Deliv, 28, 394-405, (2015) · doi:10.1089/jamp.2014.1167
[24] Lord GJ, Powell CE, Shardlow T (2014) An introduction to computational stochastic PDEs. Cambridge University Press, Cambridge · Zbl 1327.60011 · doi:10.1017/CBO9781139017329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.