×

The screen printing of a power-law fluid. (English) Zbl 1398.76015

Summary: We present a two-dimensional large-aspect-ratio model for the off-contact screen printing of a power-law fluid. We extend the work of [G. S. White et al., J. Eng. Math. 54, No. 1, 49–70 (2006; Zbl 1101.76017)] by explicitly including the fluid/air free surface that is present beneath the screen ahead of the squeegee. In the distinguished parameter limit of greatest interest to industry, the process is quasi-steady on the time-scale of a print and can be analysed in three separate regions using the method of matched asymptotic expansions. This allows us to predict where the fluid transfers through the screen, the point at which it first makes contact with the substrate, and the amount of fluid deposited on the substrate during a print stroke. Finally, we show that using a shear-thinning fluid will decrease the amount of fluid transferred ahead of the squeegee, but increase the amount of fluid deposited on the substrate.

MSC:

76A20 Thin fluid films
76D08 Lubrication theory

Citations:

Zbl 1101.76017

Software:

bvp4c
Full Text: DOI

References:

[1] Kobs, DR; Voigt, DR, Parametric dependencies in thick film screening, Proc ISHM, 18, 1-10, (1970)
[2] Riemer, DE, Analytical model of the screen printing process: part 1, Solid State Technol, 8, 107-111, (1988)
[3] Riemer, DE, Analytical model of the screen printing process: part 2, Solid State Technol, 9, 85-90, (1988)
[4] Riemer, DE, The theoretical fundamentals of the screen printing process, Hybrid Circuits, 18, 8-17, (1989)
[5] Taylor, GI; Schäfer, M (ed.), On scraping viscous fluid from a plane surface, 313-315, (1962), Berlin · Zbl 0105.39001
[6] Hunter, B, A Stokes flow analysis of the screen printing process, Int J Microcircuits Electron Pack, 17, 21-26, (1994)
[7] Riedler, J, Viscous flow in corner regions with a moving wall and leakage of fluid, Acta Mech, 48, 95-102, (1983) · Zbl 0531.76027 · doi:10.1007/BF01178500
[8] Jeong, J; Kim, M, Slow viscous flow due to sliding of a semi-infinite plate over a plane, J Phys Soc Jpn, 54, 1789-1799, (1985) · doi:10.1143/JPSJ.54.1789
[9] Owczarek, JA; Howland, FL, A study of the off-contact screen printing process - part I: model of the printing process and some results derived from experiments, IEEE Trans Comp Hybrids Manuf Technol, 13, 358-367, (1990) · doi:10.1109/33.56169
[10] Owczarek, JA; Howland, FL, A study of the off-contact screen printing process - part II: analysis of the model of the printing process, IEEE Trans Comp Hybrids Manuf Technol, 13, 368-375, (1990) · doi:10.1109/33.56170
[11] Clements, DJ; Desmulliez, MPY; Abraham, E, The evolution of paste pressure during stencil printing, Solder Surf Mt Tech, 19, 9-14, (2007) · doi:10.1108/09540910710843720
[12] Anderson, JT; Gethin, DT; Claypole, TC; Jewell, EH; Bohan, MFJ; Korochkina, TV, Hydrodynamic interactions in the screen-printing process, J Prepress Print Technol, 3, 10-17, (2000)
[13] White, G; Breward, C; Howell, P; Young, R, A model for the screen-printing of Newtonian fluids, J Eng Math, 54, 49-70, (2005) · Zbl 1101.76017 · doi:10.1007/s10665-005-9000-7
[14] Chapman, SJ; Fitt, AD; Please, CP, Extrusion of power-law shear thinning fluids with small exponent, Int J Non-linear Mech, 32, 187-199, (1997) · Zbl 0888.76003 · doi:10.1016/S0020-7462(96)00042-X
[15] Ross, AB; Wilson, SK; Duffy, BR, Blade coating of a power-law fluid, Phys Fluids, 11, 958-970, (1999) · Zbl 1147.76485 · doi:10.1063/1.869968
[16] Ostwald, W, Ueber die geschwindigkeitsfunktion der viskosität disperser systeme. I, Colloid Polym Sci, 36, 99-117, (1925) · doi:10.1007/BF01431449
[17] Bird R, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2 edn. Fluid mechanics. Wiley, New York
[18] Beavers, GS; Joseph, DD, Boundary conditions at a naturally permeable wall, J Fluid Mech, 30, 197-207, (1967) · doi:10.1017/S0022112067001375
[19] Pozdrikidis, C, Shear flow over a particulate or fibrous plate, J Eng Math, 39, 3-24, (2001) · Zbl 1015.76080 · doi:10.1023/A:1004893310388
[20] Pozdrikidis, C, Boundary conditions for shear flow past a permeable interface modelled as an array of cylinders, Comput Fluids, 33, 1-17, (2004) · Zbl 1033.76010 · doi:10.1016/S0045-7930(03)00030-6
[21] Pozdrikidis, C, Effect of membrane thickness on the slip and drip velocity in parallel shear flow, J Fluids Struct, 20, 177-187, (2005) · doi:10.1016/j.jfluidstructs.2004.10.013
[22] Tio, KK; Sadhal, SS, Boundary conditions for Stokes flow near a porous membrane, Appl Sci Res, 52, 1-20, (1994) · Zbl 0814.76034 · doi:10.1007/BF00849164
[23] Taroni M (2010) Thin film models of the screen-printing process. D.Phil thesis, Oxford
[24] White G (2006) Mathematical modelling of the screen-printing process. D.Phil thesis, Oxford
[25] McEwan, AD; Taylor, GI, The peeling of a flexible strip attached by a viscous adhesive, J Fluid Mech, 26, 1-15, (1966) · doi:10.1017/S0022112066001058
[26] Taylor, GI, Cavitation of a viscous fluid in narrow passages, J Fluid Mech, 16, 595-619, (1963) · Zbl 0126.42603 · doi:10.1017/S0022112063001002
[27] Coyne, JC; Elrod, HG, Conditions for the rupture of a lubrication film. part 1. theoretical model, J Lubr Technol, 92, 451-456, (1970) · doi:10.1115/1.3451441
[28] Savage, MD, Cavitation in lubrication. part 1. on boundary conditions and cavity-fluid interfaces, J Fluid Mech, 80, 743-755, (1977) · Zbl 0357.76011 · doi:10.1017/S0022112077002456
[29] Ruschak, KJ, Boundary conditions at a liquid/air interface in lubrication flows, J Fluid Mech, 119, 107-120, (1982) · Zbl 0498.76034 · doi:10.1017/S0022112082001281
[30] Coyle, DJ; Macosko, CW; Scriven, LE, Film-splitting flows in forward roll coating, J Fluid Mech, 171, 183-207, (1986) · doi:10.1017/S0022112086001416
[31] Dussan, V; EB; Davis, SH, On the motion of a fluid-fluid interface along a solid surface, J Fluid Mech, 65, 71-95, (1974) · Zbl 0282.76004 · doi:10.1017/S0022112074001261
[32] Hocking, LM; Rivers, AD, The spreading of a drop by capillary action, J Fluid Mech, 121, 425-442, (1982) · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[33] Moriarty, JA; Terrill, EL, Mathematical modelling of the motion of hard contact lenses, Euro J Appl Math, 7, 117-575, (1996) · Zbl 0871.35077 · doi:10.1017/S0956792500002588
[34] Keller HB (1985) Numerical methods for two point boundary value problems. Dover publications, New York
[35] Boyd JP (2001) Chebyshev and Fourier spectral methods. Dover publications, New York · Zbl 0994.65128
[36] Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. ftp://ftp.mathworks.com/pub/doc/papers/bvp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.