×

Dynamics of wetting: Local contact angles. (English) Zbl 0692.76031

Summary: We discuss the motion of a triple line for a fluid spreading on a flat solid surface in condition of partial wetting: the equilibrium contact angle \(\theta_ e\) is assumed to be finite but small: \(0<\theta_ E\ll 1\). We distinguish four regions: (1) a molecular domain of size a (\(\approx a\) few Ångströms) very near the triple line, where the continuum description breaks down; (2) a proximal region (of length \(a/\theta^ 2_ e\) and height \(a/\theta_ e)\) where the long-range Van der Waals forces dominate; (3) a central region, where capillary foces and Poiseuille friction are the only important ingredients; (4) a distal region where macroscopic features (related to the size of the droplet, or to gravitational forces) come into play. In regions (2, 3, 4) the flow may be described in a lubrication approximation, and with a linearized form of the capillary forces. We restrict our attention to low capillary numbers Ca and expand the profiles to first order in Ca near the static solution. The main results are: (a) the logarithmic singularity which would have occurred in a simple wedge picture is truncated by the long- range forces, at a fluid thickness \(a/\theta_ e\). This effect is more important, at small \(\theta_ e\), than the effects of slippage which have often been proposed to remove the singularity, and which would lead to a truncation thickness comparable with the molecular size a; (b) in the centra region, the local slope \(\theta\) (x) grows logarithmically with the distance x from the triple line; (c) one can match explicitly the solutions in the central and distal region: we do this for one specific example: a plate plunging into a fluid with an incidence angle exactly equal to \(\theta_ e\). In this case we show that, far inside the distal region, the perturbation of the slope decays like \(1/x^ 2\).

MSC:

76D08 Lubrication theory
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112076002838 · Zbl 0341.76010 · doi:10.1017/S0022112076002838
[2] DOI: 10.1146/annurev.fl.11.010179.002103 · doi:10.1146/annurev.fl.11.010179.002103
[3] DOI: 10.1017/S0022112086000332 · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[4] DOI: 10.1088/0305-4470/7/2/010 · doi:10.1088/0305-4470/7/2/010
[5] Teletzke, Rev. Phys. Appl. 23 pp 989– (1988) · doi:10.1051/rphysap:01988002306098900
[6] Tanner, J. Phys. 12 pp 1473– (1979)
[7] DOI: 10.1017/S0022112082000949 · doi:10.1017/S0022112082000949
[8] Lelah, J. Colloid Interface Sci. 82 pp 518– (1981)
[9] DOI: 10.1016/0021-9797(71)90188-3 · doi:10.1016/0021-9797(71)90188-3
[10] DOI: 10.1016/0021-9797(75)90225-8 · doi:10.1016/0021-9797(75)90225-8
[11] DOI: 10.1017/S0022112082001979 · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[12] Hardy, Phil. Mag. 38 pp 49– (1919) · doi:10.1080/14786440708635928
[13] DOI: 10.1017/S0022112077000123 · Zbl 0355.76023 · doi:10.1017/S0022112077000123
[14] DOI: 10.1007/BF01419552 · doi:10.1007/BF01419552
[15] DOI: 10.1103/RevModPhys.57.827 · doi:10.1103/RevModPhys.57.827
[16] de Gennes, C. R. Acad. Sci. Paris 288 pp 219– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.