×

Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. (English) Zbl 1147.76330

Summary: The dynamic contact angle formed when a liquid curtain impinges onto a moving solid is measured for aqueous glycerol solutions in different flow regimes. It is usually assumed that the dynamic contact angle is simply a function of the contact-line speed and the material properties of the contacting media. The new results show that this is not the case. For a given gas/liquid/solid combination and a given contact-line speed, the dynamic contact angle can be varied by varying the flow rate of the liquid and/or the curtain height, that is by varying the flow field near the contact line. The possibility of attributing this effect merely to free-surface bending and interpreting the results in terms of the so-called “apparent” contact angle is discussed and ruled out on the basis of some general qualitative arguments and analysis of the characteristic length scales involved. A probable connection between the observed effect and the physical mechanism of interface disappearance and formation incorporated in a recently developed theory of wetting is discussed.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76A20 Thin fluid films
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112082000949 · doi:10.1017/S0022112082000949
[2] DOI: 10.1002/aic.690400205 · doi:10.1002/aic.690400205
[3] DOI: 10.1016/0021-9797(85)90144-4 · doi:10.1016/0021-9797(85)90144-4
[4] DOI: 10.1016/0301-9322(93)90090-H · Zbl 1144.76452 · doi:10.1016/0301-9322(93)90090-H
[5] DOI: 10.1017/S0022112096004569 · Zbl 0887.76021 · doi:10.1017/S0022112096004569
[6] DOI: 10.1016/0021-9797(75)90225-8 · doi:10.1016/0021-9797(75)90225-8
[7] DOI: 10.1016/0009-2509(76)87040-6 · doi:10.1016/0009-2509(76)87040-6
[8] DOI: 10.1038/282489a0 · doi:10.1038/282489a0
[9] DOI: 10.1016/0021-9797(69)90411-1 · doi:10.1016/0021-9797(69)90411-1
[10] DOI: 10.1103/PhysRevLett.64.882 · doi:10.1103/PhysRevLett.64.882
[11] DOI: 10.1016/0021-9797(91)90020-9 · doi:10.1016/0021-9797(91)90020-9
[12] DOI: 10.1017/S0022112082001979 · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[13] DOI: 10.1063/1.869147 · doi:10.1063/1.869147
[14] DOI: 10.1146/annurev.fl.11.010179.002103 · doi:10.1146/annurev.fl.11.010179.002103
[15] DOI: 10.1017/S0022112074001261 · Zbl 0282.76004 · doi:10.1017/S0022112074001261
[16] DOI: 10.1016/0169-5983(94)90063-9 · doi:10.1016/0169-5983(94)90063-9
[17] DOI: 10.1002/aic.690420302 · doi:10.1002/aic.690420302
[18] DOI: 10.1017/S0022112098008532 · Zbl 0914.76029 · doi:10.1017/S0022112098008532
[19] DOI: 10.1017/S0022112064000015 · Zbl 0118.20501 · doi:10.1017/S0022112064000015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.