×

Quadratic surface preserving parameterization of unorganized point data. (English) Zbl 07845520

Summary: Finding parameterizations of spatial point data is a fundamental step for surface reconstruction in Computer Aided Geometric Design. Especially the case of unstructured point clouds is challenging and not widely studied. In this work, we show how to parameterize a point cloud by using barycentric coordinates in the parameter domain, with the aim of reproducing the parameterizations provided by quadratic triangular Bézier surfaces. To this end, we train an artificial neural network that predicts suitable barycentric parameters for a fixed number of data points. In a subsequent step we improve the parameterization using non-linear optimization methods. We then use a number of local parameterizations to obtain a global parameterization using a new overdetermined barycentric parameterization approach. We study the behavior of our method numerically in the zero-residual case (i.e., data sampled from quadratic polynomial surfaces) and in the non-zero residual case and observe an improvement of the accuracy in comparison to standard methods. We also compare different approaches for non-linear surface fitting such as tangent distance minimization, squared distance minimization and the Levenberg Marquardt algorithm.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)

Software:

PyTorch; Adam
Full Text: DOI

References:

[1] Barhak, J.; Fischer, A., Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques, IEEE Trans. Vis. Comput. Graph., 7, 1-16, 2001
[2] Bogo, F.; Romero, J.; Loper, M.; Black, M. J., FAUST: dataset and evaluation for 3D mesh registration, (Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, IEEE: IEEE Piscataway, NJ, USA)
[3] Chen, D.; Hu, F.; Nian, G.; Yang, T., Deep residual learning for nonlinear regression, Entropy, 22, 193, 2020
[4] Eck, M.; DeRose, T.; Duchamp, T.; Hoppe, H.; Lounsbery, M.; Stuetzle, W., Multiresolution analysis of arbitrary meshes, (Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995), 173-182
[5] Floater, M. S., Parametrization and smooth approximation of surface triangulations, Comput. Aided Geom. Des., 14, 231-250, 1997 · Zbl 0906.68162
[6] Floater, M. S.; Reimers, M., Meshless parameterization and surface reconstruction, Comput. Aided Geom. Des., 18, 77-92, 2001 · Zbl 0971.68187
[7] Giannelli, C.; Imperatore, S.; Mantzaflaris, A.; Scholz, F., Learning meshless parameterization with graph convolutional neural networks, (Intelligent Sustainable SystemsSelected Papers of WorldS4 2023, Volume 2. Intelligent Sustainable SystemsSelected Papers of WorldS4 2023, Volume 2, Lecture Notes in Networks and Systems, vol. 817, 2024, Springer: Springer Singapore), In press. Preprint available at HAL with id hal-04142674
[8] Greiner, G.; Hormann, K., Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines, (Surface Fitting and Multiresolution Methods, 1997, Vanderbilt University Press: Vanderbilt University Press Nashville), 163-172 · Zbl 0937.65019
[9] Groiss, L.; Jüttler, B.; Mokriš, D., 27 variants of Tutte’s theorem for plane near-triangulations and an application to periodic spline surface fitting, Comput. Aided Geom. Des., 85, Article 101975 pp., 2021 · Zbl 1472.65017
[10] Hauer, M.; Jüttler, B.; Schicho, J., Projective and affine symmetries and equivalences of rational and polynomial surfaces, J. Comput. Appl. Math., 349, 424-437, 2019 · Zbl 1423.14225
[11] He, K.; Zhang, X.; Ren, S.; Sun, J., Deep residual learning for image recognition, (2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016), 770-778
[12] Hormann, K.; Greiner, G., MIPS: an efficient global parametrization method, (Laurent, P. J.; Sablonnière, P.; Schumaker, L. L., Curve and Surface Design: Saint-Malo, 2000). (Laurent, P. J.; Sablonnière, P.; Schumaker, L. L., Curve and Surface Design: Saint-Malo, 2000), Innovations in Applied Mathematics, 153-162, 1999, Vanderbilt University Press: Vanderbilt University Press Nashville
[13] Kingma, D. P.; Ba, J., Adam: a method for stochastic optimization, 2014, Preprint
[14] Laube, P.; Franz, M. O.; Umlauf, G., Deep learning parametrization for B-spline curve approximation, (2018 International Conference on 3D Vision (3DV), 2018, IEEE), 691-699
[15] Moré, J. J., The Levenberg-Marquardt algorithm: implementation and theory, (Watson, G. A., Numerical Analysis, 1978, Springer: Springer Berlin Heidelberg), 105-116 · Zbl 0372.65022
[16] Paszke, A., Pytorch: an imperative style, high-performance deep learning library, (Advances in Neural Information Processing Systems 32, 2019, Curran Associates, Inc.), 8024-8035
[17] Rios, D.; Jüttler, B., LSPIA, (stochastic) gradient descent, and parameter correction, J. Comput. Appl. Math., 406, Article 113921 pp., 2022 · Zbl 1482.65024
[18] Scholz, F.; Jüttler, B., Parameterization for polynomial curve approximation via residual deep neural networks, Comput. Aided Geom. Des., 85, Article 101977 pp., 2021 · Zbl 1467.65017
[19] Shivakumar, P.; Chew, K. H., A sufficient condition for nonvanishing of determinants, Proc. Am. Math. Soc., 43, 63-66, 1974 · Zbl 0262.15008
[20] Tutte, W. T., How to draw a graph, Proc. Lond. Math. Soc., 3, 743-767, 1963 · Zbl 0115.40805
[21] Wang, W.; Pottmann, H.; Liu, Y., Fitting B-spline curves to point clouds by curvature-based squared distance minimization, ACM Trans. Graph., 25, 214-238, 2006
[22] Zheng, W.; Bo, P.; Liu, Y.; Wang, W., Fast B-spline curve fitting by L-BFGS, Comput. Aided Geom. Des., 29, 448-462, 2012 · Zbl 1250.65022
[23] Zhu, Z.; Iglesias, A.; You, L.; Zhang, J. J., A review of 3D point clouds parameterization methods, (International Conference on Computational Science. International Conference on Computational Science, Lecture Notes in Computer Science, vol. 13352, 2022, Springer: Springer Cham), 690-703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.