×

On the endomorphism semigroup of a multiple wreath product of groups. (English) Zbl 1392.20012

Summary: Let \(C_{p^m}\) be a cyclic group of order \(p^m\), where \(p\) is a prime and \(m\) is an arbitrary positive integer. It is proved that the wreath product \((\ldots((C_{p^m}\mathrm{Wr}C_{p^m})\mathrm{Wr}C_{p^m})\mathrm{Wr}\ldots)\mathrm{Wr}C_{p^m}\) (\(n\) factors) is determined for each natural \(n\) by its endomorphism semigroup in the class of all groups. It follows that (a) every Sylow subgroup of a finite symmetric group is determined by its endomorphism semigroup in the class of all groups, (b) each finite \(p\)-group \(G\) is embeddable into a finite \(p\)-group \(G^\ast\) such that \(G^\ast\) is determined by its endomorphism semigroup in the class of all groups.

MSC:

20D40 Products of subgroups of abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D45 Automorphisms of abstract finite groups
20D15 Finite nilpotent groups, \(p\)-groups
20E22 Extensions, wreath products, and other compositions of groups
20M20 Semigroups of transformations, relations, partitions, etc.
Full Text: DOI

References:

[1] Alperin J. L., Pacific J. Math. 12 pp 1– (1962) · Zbl 0112.25902 · doi:10.2140/pjm.1962.12.1
[2] Bodnarchuk Yu. V., Ukrain. Mat. Zh. 36 (2) pp 143– (1984) · doi:10.1007/BF01066945
[3] Bodnarchuk Yu. V., Ukrain. Mat. Zh. 36 (6) pp 688– (1984)
[4] Bodnarchuk Yu. V., V{ı\=}snik Ki��v. Un{ı\=}v. Ser. Mat. Mekh. 27 pp 14– (1985)
[5] Bodnarchuk Yu. V., Ukrain. Mat. Zh. 43 (7) pp 889– (1991)
[6] Houghton C. H., Publ. Math. Debrecen 9 pp 307– (1962)
[7] Krylov P. A., Endomorphism Rings of Abelian Groups (2003) · Zbl 1044.20037 · doi:10.1007/978-94-017-0345-1
[8] Meldrum J. D. P., Wreath Products of Groups and Semigroups 74 (1995) · Zbl 0833.20001
[9] Neumann P. M., Math. Z. 84 pp 343– (1964) · Zbl 0122.02901 · doi:10.1007/BF01109904
[10] Puusemp P., J. Nonlinear Mathematical Physics 13 pp 93– (2006) · Zbl 1154.20305 · doi:10.2991/jnmp.2006.13.s.11
[11] Puusemp P., Algebr. Group. Geometr. 16 pp 183– (1999)
[12] Puusemp P., Algebr. Group. Geometr. 17 pp 479– (2000)
[13] Puusemp P., Proceedings of the International Conference on Semigroups pp 161– (2000)
[14] Puusemp P., Acta et Comment. Univ. Tartuensis 366 pp 76– (1975)
[15] Puusemp P., Proc. Eston. Acad. Sci. Phys. Math. 46 pp 235– (1997)
[16] Puusemp P., Proc. Eston. Acad. Sci. Phys. Math. 38 pp 139– (1989)
[17] Puusemp P., Algebr. Group. Geometr. 20 pp 101– (2003)
[18] Puusemp P., Int. J. Algebr. Comput. 18 pp 243– (2008) · Zbl 1146.20026 · doi:10.1142/S0218196708004421
[19] DOI: 10.1155/2009/245617 · Zbl 1189.20025 · doi:10.1155/2009/245617
[20] Riedl J. M., Can. Math. Bull. 55 (2) pp 390– (2012) · Zbl 1252.20024 · doi:10.4153/CMB-2011-088-3
[21] Rotman J. J., An Introduction to the Theory of Groups 148 (1995) · Zbl 0810.20001 · doi:10.1007/978-1-4612-4176-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.