×

Character degrees and nilpotence class of finite \(p\)-groups: an approach via pro-\(p\) groups. (English) Zbl 1026.20002

Let \(G\) be a finite \(p\)-group, \(p\) a prime, \(\text{cd}(G)=\{\chi(1)\mid\chi\in\text{Irr}(G)\}\). According to Isaacs’ result, every finite set \(\mathcal S\) of powers of \(p\) containing \(1\), equals \(\text{cd}(G)\) for some \(p\)-group \(G\) of class \(\leq 2\) (in what follows we assume that \(1\in\mathcal S\) always). The set \(\mathcal S\) is class bounding if there exists \(n\in\mathbb{N}\) such that every \(p\)-group \(G\) with \(\text{cd}(G)=\mathcal S\) has class at most \(n\). The set \(\mathcal S\) is ‘strongly class bounding’ if every subset of \(\mathcal S\) that contains \(1\) is class bounding. The authors ask if any strongly class bounding set is also class bounding. There are a lot of papers devoted to criteria for \(\mathcal S\) to be class bounding. This paper is an interesting contribution to this theme. In their investigation the authors use the theory of pro-\(p\)-groups. Below we present some typical results.
Let \(\epsilon_p=0\) if \(p>2\) and \(\epsilon_2=1\).
Theorem B. Let \(p^j=\min\{d\mid d\in{\mathcal S}-\{1\}\}p\). If \(|{\mathcal S}|\leq j+2-\epsilon_p\), then \(\mathcal S\) is class bounding.
Clearly, \(\mathcal S\) of Theorem B is strongly class bounding.
Corollary C. Given any \(n\in\mathbb{N}\) and a prime \(p\), there exists a \(p\)-group \(G\) such that \(\text{cd}(G)\) is class bounding and the derived length of \(G\) equals \(n\).
Theorem E. If \(\max\{d\mid d\in{\mathcal S}\}<p^j\) for some \(j>1\), then the set \({\mathcal S}'={\mathcal S}\cup\{p^j,\dots,p^{2j+1}\}\) is not class bounding.
It follows from Theorem E that the set \({\mathcal S}=\{1,p^2,p^3,p^4,\dots,p^7\}\) is not class bounding and \(p\not\in\mathcal S\), answering a question of Isaacs and Slattery. In Theorem A non strongly class bounding sets are characterized.
In conclusion \(6\) open questions are formulated. We present only two of them. Is \(\{1,2^2,2^4,2^5\}\) class bounding? Is it true that if \({\mathcal S}\supseteq\{1,p^j,\dots,p^{2j+1}\}\) for some \(j>1\), then \(\mathcal S\) is not class bounding?

MSC:

20C15 Ordinary representations and characters
20D15 Finite nilpotent groups, \(p\)-groups
20E18 Limits, profinite groups
20D60 Arithmetic and combinatorial problems involving abstract finite groups
Full Text: DOI

References:

[1] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-\? groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. · Zbl 0744.20002
[2] Robert M. Guralnick, On the number of generators of a finite group, Arch. Math. (Basel) 53 (1989), no. 6, 521 – 523. · Zbl 0675.20026 · doi:10.1007/BF01199809
[3] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). · Zbl 0217.07201
[4] Bertram Huppert, A remark on the character-degrees of some \?-groups, Arch. Math. (Basel) 59 (1992), no. 4, 313 – 318. · Zbl 0819.20008 · doi:10.1007/BF01197044
[5] I. M. Isaacs, Sets of \?-powers as irreducible character degrees, Proc. Amer. Math. Soc. 96 (1986), no. 4, 551 – 552. · Zbl 0598.20003
[6] I. M. ISAACS, “Character Theory of Finite Groups”, Dover, New York, 1994. · Zbl 0849.20004
[7] I. M. Isaacs, Characters of groups associated with finite algebras, J. Algebra 177 (1995), no. 3, 708 – 730. · Zbl 0839.20010 · doi:10.1006/jabr.1995.1325
[8] I. M. Isaacs and Greg Knutson, Irreducible character degrees and normal subgroups, J. Algebra 199 (1998), no. 1, 302 – 326. · Zbl 0889.20005 · doi:10.1006/jabr.1997.7191
[9] I. M. Isaacs and Alexander Moretó, The character degrees and nilpotence class of a \?-group, J. Algebra 238 (2001), no. 2, 827 – 842. · Zbl 0989.20006 · doi:10.1006/jabr.2000.8651
[10] I. M. Isaacs and D. S. Passman, A characterization of groups in terms of the degrees of their characters. II, Pacific J. Math. 24 (1968), 467 – 510. · Zbl 0155.05502
[11] I. M. ISAACS, M. C. SLATTERY, Character degree sets that do not bound the class of a \(p\)-group, to appear in Proc. Amer. Math. Soc. · Zbl 0995.20001
[12] Thomas Michael Keller, Orbit sizes and character degrees, Pacific J. Math. 187 (1999), no. 2, 317 – 332. · Zbl 0934.20010 · doi:10.2140/pjm.1999.187.317
[13] G. Klaas, C. R. Leedham-Green, and W. Plesken, Linear pro-\?-groups of finite width, Lecture Notes in Mathematics, vol. 1674, Springer-Verlag, Berlin, 1997. · Zbl 0901.20013
[14] L. G. Kovács, On finite soluble groups, Math. Z. 103 (1968), 37 – 39. · Zbl 0183.02804 · doi:10.1007/BF01111284
[15] C. R. Leedham-Green, S. McKay, and W. Plesken, Space groups and groups of prime-power order. V. A bound to the dimension of space groups with fixed coclass, Proc. London Math. Soc. (3) 52 (1986), no. 1, 73 – 94. · Zbl 0593.20036 · doi:10.1112/plms/s3-52.1.73
[16] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime-power order. I, Arch. Math. (Basel) 35 (1980), no. 3, 193 – 202. · Zbl 0437.20016 · doi:10.1007/BF01235338
[17] Andrea Lucchini, A bound on the number of generators of a finite group, Arch. Math. (Basel) 53 (1989), no. 4, 313 – 317. · Zbl 0679.20028 · doi:10.1007/BF01195209
[18] Avinoam Mann, Generators of 2-groups, Israel J. Math. 10 (1971), 158 – 159. · Zbl 0232.20026 · doi:10.1007/BF02771566
[19] Avinoam Mann, Minimal characters of \?-groups, J. Group Theory 2 (1999), no. 3, 225 – 250. · Zbl 0940.20014 · doi:10.1515/jgth.1999.016
[20] Andrea Previtali, Orbit lengths and character degrees in \?-Sylow subgroups of some classical Lie groups, J. Algebra 177 (1995), no. 3, 658 – 675. · Zbl 0851.20007 · doi:10.1006/jabr.1995.1322
[21] J. M. RIEDL, Fitting heights of solvable groups with few character degrees, J. Algebra 233 (2000), 287-308. CMP 1 793 598 · Zbl 0965.20004
[22] Michael C. Slattery, Character degrees and nilpotence class in \?-groups, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 76 – 80. · Zbl 0832.20010
[23] John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0909.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.