×

Finite groups with a given set of character degrees. (English) Zbl 1348.20007

In the summary one finds: “Let \(G\) be a finite group with \(\{1,q,r,qm,q^2m,rqm\}\) as the character degree set, where \(r\) and \(q\) are distinct primes and \(m>1\) is an integer not divisible by \(q\) and \(r\). It is shown that \(G\) is solvable and the derived length of \(G\) equals 3.”
Several papers published earlier in time dealt with complex character degree sets, like \(\{1,p,q,r,pq,pr\}\) where \(p\), \(q\), \(r\) are distinct primes, and \(\{1,p\}\), and \(\{1,q,r\}\), etc.. The rich reference list gives (for instance), a paper by K. Aziziheris [Algebr. Represent. Theory 14, No. 5, 949-958 (2011; Zbl 1245.20004)], by M. L. Lewis [J. Algebra 206, No. 1, 235-260 (1998; Zbl 0915.20003)] and by T. Noritzsch [J. Algebra 175, No. 3, 767-798 (1995; Zbl 0839.20014)].
In order to obtain their results, the authors develop a lot of theory to reach their goals. We kindly refer the interested reader to the details of the contents. Knowledge of cyclotomic polynomials, Lie-group representations, Steinberg characters, do play a rôle as well as the classification of the finite simple groups.

MSC:

20C15 Ordinary representations and characters
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D60 Arithmetic and combinatorial problems involving abstract finite groups
Full Text: DOI

References:

[1] Aziziheris, K.: Bounding the derived length for a given set of character degrees. Algebr. Represent. Theory 14(5), 949-958 (2011) · Zbl 1245.20004 · doi:10.1007/s10468-010-9224-8
[2] Aziziheris, K.: Some character degree conditions implying solvability of finite groups. Algebr. Represent. Theory 16(3), 747-754 (2013) · Zbl 1277.20009 · doi:10.1007/s10468-011-9328-9
[3] Benjamin, D.: Coprimeness among irreducible character degrees of finite solvable groups. Proc. Amer. Math. Soc. 125, 2831-2837 (1997) · Zbl 0889.20004 · doi:10.1090/S0002-9939-97-04269-X
[4] Bianchi, M., Chillag, D., Lewis, M.L., Pacifici, E.: Character degree graphs that are complete graphs. Proc. Amer. Math. Soc. 135, 671-676 (2007) · Zbl 1112.20006 · doi:10.1090/S0002-9939-06-08651-5
[5] Berkovich, Y.G.: Degrees of irreducible characters and normal p-complements. Proc. Amer. Math. Soc. 106, 33-35 (1989) · Zbl 0685.20006
[6] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R. A.: Atlas of Finite Groups. Oxford University Press, London (1984) · Zbl 0568.20001
[7] Huppert, B.: Endliche Gruppen I. Springer, Berlin (1983) · Zbl 0217.07201
[8] Huppert, B., Blackburn, N.: Finite Groups II. Springer, Berlin (1982) · Zbl 0477.20001 · doi:10.1007/978-3-642-67994-0
[9] Isaacs I.M., Passman, D.S.: Half-transitive automorphism groups. Canad. J. Math. 18, 1243-1250 (1966) · Zbl 0145.02701 · doi:10.4153/CJM-1966-122-5
[10] Isaacs, I. M. : Character Theory of Finite Groups. Academic Press, New York (1976) · Zbl 0337.20005
[11] Isaacs, I.M.: Coprime group actions fixing all nonlinear irreducible characters. Canad. J. Math. 41, 68-82 (1989) · Zbl 0686.20002 · doi:10.4153/CJM-1989-003-2
[12] Isaacs, I.M.: Algebra: A Graduate Course. Brooks/Cole, Pacific Grove, California (1994) · Zbl 0805.00001
[13] Isaacs I.M., Knutson, G. : Irreducible character degrees and normal subgroups. J. Algebra 199, 302-326 (1998) · Zbl 0889.20005 · doi:10.1006/jabr.1997.7191
[14] Lewis, M.L.: Derived lengths of solvable groups satisfying the one-prime hypothesis. Comm. Algebra 26, 2419-2428 (1998) · Zbl 0907.20015 · doi:10.1080/00927879808826286
[15] Lewis, M.L.: Determining group structure from sets of irreducible character degrees. J. Algebra 206, 235-260 (1998) · Zbl 0915.20003 · doi:10.1006/jabr.1998.7435
[16] Lewis, M.L.: Solvable groups whose degree graphs have two connected components. J. Group Theory 4, 255-275 (2001) · Zbl 0998.20009 · doi:10.1515/jgth.2001.023
[17] Lewis, M.L.: Derived lengths of solvable groups having five irreducible character degrees I. Algebr. Represent. Theory 4, 469-489 (2001) · Zbl 1040.20004 · doi:10.1023/A:1012706718244
[18] Lewis, M.L.: Classifying character degree graphs with 5 vertices. In: Ho, C. Y., Sin, P., Tiep, P. H., Turull, A. (eds.) Finite Groups 2003, pp 247-265. Walter de Gruyter, Berlin (2004) · Zbl 1078.20008
[19] Lewis M.L., White, D. L. : Nonsolvable groups with no prime dividing three character degrees. J. Algebra 336, 158-183 (2011) · Zbl 1246.20006 · doi:10.1016/j.jalgebra.2011.03.028
[20] Malle G., Moreto, A.: Nonsolvable groups with few character degrees. J. Algebra 294, 117-126 (2005) · Zbl 1098.20007 · doi:10.1016/j.jalgebra.2005.01.006
[21] Manz O., Wolf, T.R.: Representations of Solvable Groups. Cambridge Univ. Press, Cambridge (1993) · Zbl 0928.20008 · doi:10.1017/CBO9780511525971
[22] Noritzsch, T.: Groups having three complex irreducible character degrees. J. Algebra 175, 767-798 (1995) · Zbl 0839.20014 · doi:10.1006/jabr.1995.1213
[23] Schmid, P.: Extending the Steinberg representation. J. Algebra 150, 254-256 (1992) · Zbl 0794.20022 · doi:10.1016/S0021-8693(05)80060-2
[24] Riedl, J.M.: Fitting heights of solvable groups with few character degrees. J. Algebra 233, 287-308 (2000) · Zbl 0965.20004 · doi:10.1006/jabr.2000.8426
[25] Riedl, J.M.: Orbits and stabilizers for solvable linear groups. Canad. Math. Bull. 49, 285-295 (2006) · Zbl 1126.20006 · doi:10.4153/CMB-2006-030-1
[26] White, D.L.: Character degrees of extensions of PSL2(q) and SL2(q). J. Group Theory 16, 1-9633 (2013) · Zbl 1294.20014 · doi:10.1515/jgt-2012-0026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.