×

The Maschke property for the Sylow \(p\)-subgroups of the symmetric group \(S_{p^n}\). (English) Zbl 1446.20035

Summary: In this paper we prove that the Maschke property holds for coprime actions on some important classes of \(p\)-groups like: metacyclic \(p\)-groups, \(p\)-groups of \(p\)-rank two for \(p>3\) and some weaker property holds in the case of regular \(p\)-groups. The main focus will be the case of coprime actions on the iterated wreath product \(P_n\) of cyclic groups of order \(p\), i.e. on Sylow \(p\)-subgroups of the symmetric groups \(S_{p^n}\), where we also prove that a stronger form of the Maschke property holds. These results contribute to a future possible classification of all \(p\)-groups with the Maschke property. We apply these results to describe which normal partition subgroups of \(P_n\) have a complement. In the end we also describe abelian subgroups of \(P_n\) of largest size.

MSC:

20D45 Automorphisms of abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20B35 Subgroups of symmetric groups

References:

[1] Y. Berkovich, Some consequences of Maschke’s theorem,Algebra Colloq.,5no. 2 (1998) 143-158. · Zbl 0911.20007
[2] Y. Berkovich,Groups of prime power order,. V 1, de Gruyter Expositions in Mathematics,46Walter de Gruyter GmbH & Co. KG, Berlin, 2008. · Zbl 1168.20001
[3] Yu. V. Bodnarchuk, Structure of the group of automorphisms of a Sylowp-subgroup of the symmetric groupSpn(p̸= 2), Ukrainian Math. J.,36no. 6 (1984) 512-516. · Zbl 0578.20002
[4] H. C´ardenas and E. Lluis, El normalizador delp-grupo de Sylow del grupo simetricoSpn[The normalizer of the Sylow p-group of the symmetric groupSpn],Bol. Soc. Mat. Mexicana,9(1964) 1-6.
[5] S. Covello,Minimal parabolic subgroups in the symmetric groups, M. Phil. Thesis, University of Birmingham, 1998.
[6] Yu. V. Dmitruk, Structure of Sylow two-subgroups of the symmetric group of degree 2n,Ukrainian Math. J.,30no. 2 (1978) 117-124. · Zbl 0408.20016
[7] Yu. V. Dmitruk and V. I. Sushchanskii, Structure of Sylow 2-subgroups of the alternating groups and normalizers of Sylow subgroups in the symmetric and alternating groups,Ukrainian Math. J.,33no. 3 (1981) 235-241. · Zbl 0474.20002
[8] K. Doerk and T. Hawkes,Finite soluble groups, De Gruyter Expositions in Mathematics4, Walter de Gruyter, Berlin, New York, 1992. · Zbl 0753.20001
[9] S. Dolfi, Large orbits in coprime actions of solvable groups,Trans. Amer. Math. Soc.,360(2008) 135-152. · Zbl 1129.20016
[10] P. Flavell, The fixed points of coprime action,Arch. Math.,75no. 3 (2000) 173-177. · Zbl 0990.20014
[11] D. Gluck, Coprime actions with all orbit sizes small,Proc. AMS,143no. 6 (2015) 2371-2377. · Zbl 1319.20024
[12] D. Gorenstein,Finite groups, Chelsea Publ. Co., New York, 1980. · Zbl 0463.20012
[13] L. H´ethelyi and E. Horv´ath, Galois actions on blocks and classes of finite groups,J. Algebra,320(2008) 660-679. · Zbl 1156.20009
[14] B. Huppert,Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York 1967. · Zbl 0217.07201
[15] I. M. Isaacs,Finite group theory, Graduate Studies in Mathematics,92,American Mathematical Society, Providences, Rhode Island, 2008. · Zbl 1169.20001
[16] I. M. Isaacs, M. L. Lewis and G. Navarro, Invariant characters and coprime actions on finite nilpotent groups,Arch. Math.,74no. 6 (2000) 401-403. · Zbl 0967.20004
[17] L. Kaloujnine, La structure desp-groupes de Sylow des groupes sym´etriques finis,Ann. Sci. ´Ecole Norm. Sup. (3), 65(1948) 239-276. · Zbl 0034.30501
[18] H. Kurzweil and B. Stellmacher,The theory of finite groups, Springer Universitext, 2004. · Zbl 1047.20011
[19] C. R. Leedham-Green and S. McKay,The structure of groups of prime power order, London Mathematical Society Monographs, New Series,27Oxford University Press, Oxford, 2002. · Zbl 1008.20001
[20] Zhengxing Li, Coleman automorphisms of permutational wreath products,Comm. Alg.,44no. 9 (2016) 3933-3938. · Zbl 1358.20016
[21] G. Malle, G. Navarro and B. Sp¨ath, Invariant blocks under coprime actions,Doc. Math.,20(2015) 491-506. · Zbl 1365.20006
[22] V. D. Mazurov, Finite groups with metacyclic Sylow 2-subgroups,Sib. Math. J.,8no. 5 (1967) 733-745. · Zbl 0167.29501
[23] A. Moreto and L. Sanus, Coprime actions and degrees of primitive inducers of invariant characters,Bull. Austral. Math. Soc.,64(2001) 315-320. · Zbl 0998.20011
[24] R. C. Orellana, M. E. Orrison and D. N. Rockmore, Rooted trees and iterated wreath products,Adv. in Appl. Math., 33(2004) 531-547. · Zbl 1057.05078
[25] J.M.Riedl,Automorphismsofregularwreathproductp-groups,Int.J.Math.Math.Sci.,(2009), doi:10.1155/2009/245617. · Zbl 1189.20025
[26] D. N. Rockmore, Fast Fourier transforms and wreath products,Appl. Comput. Harmon. Anal.,2no. 3 (1995) 279-292. · Zbl 0841.65141
[27] M. Seong and A. Wu, Generalized iterated wreath products of cyclic groups and rooted tree correspondence, arXiv:1409.0603v1[math.RT] 2, 2014.
[28] S. Sidki,Regular trees and their automorphisms, Monografias de Matematica,56, IMPA, Rio de Janeiro, 1998. · Zbl 1013.05037
[29] R. Waldecker, A theorem about coprime action,J. Algebra,320(2008) 2027-2030. · Zbl 1149.20020
[30] A. J. Weir, The Sylow subgroups of the symmetric groups,Proc. Amer. Math. Soc.,6(1955) 534-541. · Zbl 0065.25602
[31] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.