×

Consistent tangent operator for cutting-plane algorithm of elasto-plasticity. (English) Zbl 1296.74016

Summary: The paper presents a derivation of the consistent tangent operator (CTO) for the cutting-plane algorithm (CPA). For a class of plasticity models that are suitable to be integrated using CPA, an explicit recursive expression is analytically derived and is updated in each iteration of the CPA integration procedure to yield the final value of the CTO when the CPA is converged.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics
74D10 Nonlinear constitutive equations for materials with memory
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

HYPLAS
Full Text: DOI

References:

[1] Ortiz, M., Topics in Constitutive Theory for Inelastic Solids (1981), University of California: University of California Berkley, CA
[2] Wilkins, M. L., Calculation of elastic-plastic flow, Methods Comput. Phys., 3 (1964)
[3] Krieg, R. D.; Key, S. W., Implementation of time dependent plasticity theory into structural computer programs, (Stricklin, J. A.; Saczlski, K. J., Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD, vol. 20 (1976), ASME: ASME New York)
[4] Simo, J. C.; Kennedy, J. G.; Govindjee, S., Non-smooth multisurface plasticity and viscoplasticity - loading unloading conditions and numerical algorithms, Int. J. Numer. Methods Eng., 26, 2161-2185 (1988) · Zbl 0661.73058
[5] Nagtegaal, J. C., On the implementation of inelastic constitutive equations with special reference to large deformation problems, Comput. Methods Appl. Mech. Eng., 33, 469-484 (1982) · Zbl 0492.73077
[6] Kojić, M.; Bathe, K. J., The effective-stress-function algorithm for thermo-elasto-plasticity and creep, Int. J. Numer. Methods Eng., 24, 1509-1532 (1987) · Zbl 0615.73029
[7] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane-stress elastoplasticity, Int. J. Numer. Methods Eng., 22, 649-670 (1986) · Zbl 0585.73059
[8] Simo, J. C.; Ju, J. W.; Pister, K. S.; Taylor, R. L., Assessment of cap model - consistent return algorithms and rate-dependent extension, J. Eng. Mech. ASCE, 114, 191-218 (1988)
[9] Pinsky, P. M.; Ortiz, M.; Taylor, R. L., Operator split methods in the numerical solution of the finite deformation elastoplastic dynamic problems, Comput. Struct., 17, 345-359 (1983) · Zbl 0532.73044
[10] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive-equations, Comput. Methods Appl. Mech. Eng., 49, 221-245 (1985) · Zbl 0566.73035
[11] Ortiz, M.; Popov, E. P., Accuracy and stability of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Eng., 21, 1561-1576 (1985) · Zbl 0585.73057
[12] Yoon, J. W.; Yang, D. Y.; Chung, K., Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials, Comput. Methods Appl. Mech. Eng., 174, 23-56 (1999) · Zbl 1065.74624
[13] Ortiz, M.; Simo, J. C., An analysis of a new class of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Eng., 23, 353-366 (1986) · Zbl 0585.73058
[14] Chung, K., The Analysis of Anisotropic Hardening in Finite Deformation Plasticity (1984), Stanford University: Stanford University Stanford
[15] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0934.74003
[16] Vavourakis, V.; Loukidis, D.; Charmpis, D. C.; Papanastasiou, P., Assessment of remeshing and remapping strategies for large deformation elastoplastic finite element analysis, Comput. Struct., 114, 133-146 (2013) · Zbl 1291.74182
[17] Anandarajah, A., Computational Methods in Elasticity and Plasticity: Solids and Porous Media (2010), Springer: Springer New York · Zbl 1211.74001
[18] Huang, J.; Griffiths, D. V., Observations on return mapping algorithms for piecewise linear yield criteria, Int. J. Geomech., 8 (2008)
[19] Neto de Souza, E. A.; Perić, D.; Owen, D. R.J., Computational Methods for Plasticity: Theory and Applications (2008), Wiley: Wiley Chichester, West Sussex, UK
[20] Aretz, H., A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals, Int. J. Plast., 24, 1457-1480 (2008) · Zbl 1140.74412
[21] Aretz, H., Numerical analysis of diffuse and localized necking in orthotropic sheet metals, Int. J. Plast., 23, 798-840 (2007) · Zbl 1148.74307
[22] Liu, Z.; Amdahl, J.; Loset, S., Plasticity based material modelling of ice and its application to ship-iceberg impacts, Cold Reg. Sci. Technol., 65, 326-334 (2011)
[23] Lagoudas, D.; Hattl, D.; Chemisky, Y.; Machado, L.; Popov, P., Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast., 32-33, 155-183 (2012)
[24] Qidwai, M. A.; Lagoudas, D. C., Numerical implementation of shape memory alloy thermomechanical constitutive model using return mapping algorithms, Int. J. Numer. Methods Eng., 47, 1123-1168 (2000) · Zbl 0960.74067
[25] Lee, J.; Lee, M. G.; Barlat, F.; Kim, J. H., Stress integration schemes for novel homogeneous anisotropic hardening model, Comput. Methods Appl. Mech. Eng., 247-248, 73-92 (2012) · Zbl 1352.74055
[26] Cardoso, R. P.R.; Yoon, J. W., Stress integration method for a nonlinear kinematic/isotropic hardening model and its characterization based on polycrystal plasticity, Int. J. Plast., 25, 1684-1710 (2009) · Zbl 1168.74015
[27] Zaki, W., Time integration of a model for martensite detwinning and reorientation under nonproportional loading using lagrange multipliers, Int. J. Solids Struct., 49, 2951-2961 (2012)
[28] Lee, J.; Lee, J. Y.; Barlat, F.; Wagoner, R. H.; Chung, K., Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behaviour - application to springback of advanced high-strength steels, Int. J. Plast., 45, 140-159 (2013)
[29] Yapage, N. N.S.; Liyanapathirana, D. S., Implementation of an elasto-plastic constitutive model for cement stabilized clay in a non-linear finite element analysis, Eng. Comput.: Int. J. Comput. Aided Eng. Softwere, 30, 74-96 (2013)
[30] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E., Linear transfomation-based anisotropic yield functions, Int. J. Plast., 21, 1009-1039 (2005) · Zbl 1161.74328
[31] Yoon, J. W.; Barlat, F.; Dick, R. E.; Karabin, M. E., Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, Int. J. Plast., 22, 174-193 (2006) · Zbl 1148.74325
[32] Chung, K.; Richmond, O., A deformation-theory of plasticity based on minimum work paths, Int. J. Plast., 9, 907-920 (1993) · Zbl 0793.73034
[33] Hughes, T. J.R.; Taylor, R. L., Unconditionally stable algorithms for quasi-static elasto-visco-plastic finite-element analysis, Comput. Struct., 8, 169-173 (1978) · Zbl 0365.73029
[34] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Eng., 48, 101-118 (1985) · Zbl 0535.73025
[35] Runesson, K.; Samuelsson, A.; Bernspang, L., Numerical techniques in plasticity including solution advancement control, Int. J. Numer. Methods Eng., 22, 769-788 (1986) · Zbl 0586.73038
[36] Zhang, Z. L., Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models, Comput. Methods Appl. Mech. Eng., 121, 29-44 (1995) · Zbl 0851.73007
[37] Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity, Comput. Methods Appl. Mech. Eng., 134, 223-240 (1996) · Zbl 0892.73012
[38] Perez-Foguet, A.; Rodriguez-Ferran, A.; Huerta, A., Numerical differentiation for local and global tangent operators in computational plasticity, Comput. Methods Appl. Mech. Eng., 189, 277-296 (2000) · Zbl 0961.74078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.