×

Galerkin formulations of isogeometric shell analysis: alleviating locking with Greville quadratures and higher-order elements. (English) Zbl 1506.74463

Summary: We propose new quadrature schemes that asymptotically require only four in-plane points for Reissner-Mindlin shell elements and nine in-plane points for Kirchhoff-Love shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree \(p\) of the elements. The quadrature points are Greville abscissae associated with \(p\)th-order B-spline basis functions whose continuities depend on the specific Galerkin formulations, and the quadrature weights are calculated by solving a linear moment fitting problem in each parametric direction. The proposed shell element formulations are shown through numerical studies to be rank sufficient and to be free of spurious modes. The studies reveal comparable accuracy, in terms of both displacement and stress, compared with fully integrated spline-based shell elements, while at the same time reducing storage and computational cost associated with forming element stiffness and mass matrices and force vectors. The high accuracy with low computational cost makes the proposed quadratures along with higher-order spline bases, in particular polynomial orders, \(p=5\) and 6, good choices for alleviating membrane and shear locking in shells.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74K25 Shells
74S22 Isogeometric methods applied to problems in solid mechanics

Software:

Matlab
Full Text: DOI

References:

[1] Ramm, E., Form und tragverhalten, (Ramm, E.; Schunck, E., Heinz Isler Schalen (1986), Karl Krämer Verlag: Stuttgart), 29-34
[2] Ramm, E.; Wall, W. A., Shell structures—a sensitive interrelation between physics and numerics, Internat. J. Numer. Methods Engrg., 60, 1, 381-427 (2004) · Zbl 1060.74572
[3] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[4] Piegl, L.; Tiller, W., The NURBS Book (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0868.68106
[5] Li, X.; Sederberg, T. W., S-splines: A simple surface solution for IGA and CAD, Comput. Methods Appl. Mech. Engrg., 350, 664-678 (2019) · Zbl 1441.65015
[6] Sederberg, T.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and t-NURCCs, (ACM SIGGRAPH 2003 Papers. ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03 (2003), ACM: ACM New York, NY, USA), 477-484
[7] Thomas, D.; Engvall, L.; Schmidt, S.; Tew, K.; Scott, M., U-splines: spline over unstructured meshes (2018), Preprint, https://coreform.com/usplines
[8] Warren, J.; Weimer, H., Subdivision Methods for Geometric Design (2002), Morgan Kaufmann Publishers: Morgan Kaufmann Publishers San Francisco
[9] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with kirchhoff-love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[10] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Int. J. Numer. Methods Eng., 200, 1367-1378 (2011) · Zbl 1228.74077
[11] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: The Reissner-mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289 (2010) · Zbl 1227.74107
[12] Echter, R.; Oesterle, B.; Bischoff, M., A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170-180 (2013) · Zbl 1297.74071
[13] Benson, D.; Hartmann, S.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T. J.R., Blended isogeometric shells, Comput. Methods Appl. Mech. Engrg., 255, 133-146 (2013) · Zbl 1297.74114
[14] Adam, C.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Comput. Methods Appl. Mech. Engrg., 284, 106-137 (2015) · Zbl 1423.74860
[15] Adam, C.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams, Comput. Methods Appl. Mech. Engrg., 279, 1-28 (2014) · Zbl 1423.74450
[16] Bieber, S.; Oesterle, B.; Ramm, E.; Bischoff, M., A variational method to avoid locking—independent of the discretization scheme, Internat. J. Numer. Methods Engrg., 114, 8, 801-827 (2018) · Zbl 07878385
[17] Zou, Z.; Scott, M. A.; Miao, D.; Bischoff, M.; Oesterle, B.; Dornisch, W., An isogeometric Reissner-mindlin shell element based on Bézier dual basis functions: overcoming locking and improved coarse mesh accuracy, Comput. Methods Appl. Mech. Engrg., 370, Article 113283 pp. (2020) · Zbl 1506.74195
[18] Beirão Da Veiga, L.; Hughes, T. J.R.; Kiendl, J.; Lovadina, C.; Niiranen, J.; Reali, A.; Speleers, H., A locking-free model for Reissner-mindlin plates: analysis and isogeometric implementation via NURBS and triangular NURPS, Math. Models Methods Appl. Sci., 25, 08, 1519-1551 (2015) · Zbl 1321.74065
[19] Hughes, T. J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nucl. Eng. Des., 46, 1, 203-222 (1978)
[20] Hughes, T. J.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Internat. J. Numer. Methods Engrg., 11, 10, 1529-1543 (1977) · Zbl 0363.73067
[21] Bouclier, R.; Elguedj, T.; Combescure, A., Locking free isogeometric formulations of curved thick beams, Comput. Methods Appl. Mech. Engrg., 245-246, 144-162 (2012) · Zbl 1354.74260
[22] Miao, D.; Borden, M.; Scott, M.; Thomas, D., Bézier B̄ Projection, Comput. Methods Appl. Mech. Engrg., 335, 273-297 (2018) · Zbl 1440.65222
[23] Lee, S.; Rhiu, J., A new efficient approach to the formulation of mixed finite element models for structural analysis, Internat. J. Numer. Methods Engrg., 23, 9, 1629-1641 (1986) · Zbl 0596.73046
[24] Wagner, W.; Gruttmann, F., A robust non-linear mixed hybrid quadrilateral shell element, Internat. J. Numer. Methods Engrg., 64, 5, 635-666 (2005) · Zbl 1122.74526
[25] Klinkel, S.; Gruttmann, F.; Wagner, W., A mixed shell formulation accounting for thickness strains and finite strain 3d material models, Internat. J. Numer. Methods Engrg., 74, 6, 945-970 (2008) · Zbl 1158.74491
[26] Bouclier, R.; Elguedj, T.; Combescure, A., Efficient isogeometric NURBS-based solid-shell elements: mixed formulation and B̄ -method, Comput. Methods Appl. Mech. Engrg., 267, 86-110 (2013) · Zbl 1286.74096
[27] Oesterle, B.; Sachse, R.; Ramm, E.; Bischoff, M., Hierarchic isogeometric large rotation shell elements including linearized transverse shear parametrization, Comput. Methods Appl. Mech. Engrg., 321, 383-405 (2017) · Zbl 1439.74457
[28] Zienkiewicz, O.; Taylor, R.; Too, J., Reduced integration technique in general analysis of plates and shells, Internat. J. Numer. Methods Engrg., 3, 2, 275-290 (1971) · Zbl 0253.73048
[29] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Internat. J. Numer. Methods Engrg., 11, 10, 1529-1543 (1977) · Zbl 0363.73067
[30] Dornisch, W.; Müller, R.; Klinkel, S., An efficient and robust rotational formulation for isogeometric Reissner-Mindlin shell elements, Comput. Methods Appl. Mech. Engrg., 303, 1-34 (2016) · Zbl 1425.74459
[31] Hughes, T. J.R.; Tezduyar, T. E., Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element, J. Appl. Mech., 48, 3, 587 (1981) · Zbl 0459.73069
[32] Huang, H. C.; Hinton, E., A new nine node degenerated shell element with enhanced membrane and shear interpolation, Internat. J. Numer. Methods Engrg., 22, 1, 73-92 (1986) · Zbl 0593.73076
[33] Park, K.; Stanley, G., A curved C^0 shell element based on assumed natural-coordinate strains, J. Appl. Mech., 53, 2, 278 (1986) · Zbl 0588.73137
[34] Bathe, K.-J.; Dvorkin, E., A formulation of general shell elements—the use of mixed interpolation of tensorial components, Internat. J. Numer. Methods Engrg., 22, 3, 697-722 (1986) · Zbl 0585.73123
[35] Bletzinger, K.-U.; Bischoff, M.; Ramm, E., A unified approach for shear-locking-free triangular and rectangular shell finite elements, Comput. Struct., 14 (2000)
[36] Koschnick, F.; Bischoff, M.; Camprubí, N.; Bletzinger, K.-U., The discrete strain gap method and membrane locking, Comput. Methods Appl. Mech. Engrg., 194, 21-24, 2444-2463 (2005) · Zbl 1082.74053
[37] Caseiro, J. F.; Valente, R. A.F.; Reali, A.; Kiendl, J.; Auricchio, F.; Alves de Sousa, R. J., On the assumed natural strain method to alleviate locking in solid-shell NURBS-based finite elements, Comput. Mech., 53, 6, 1341-1353 (2014) · Zbl 1298.74226
[38] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, Internat. J. Numer. Methods Engrg., 37, 15, 2551-2568 (1994) · Zbl 0808.73046
[39] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Internat. J. Numer. Methods Engrg., 40, 23, 4427-4449 (1997) · Zbl 0892.73054
[40] Adam, C.; Hughes, T. J.R.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Selective and reduced numerical integrations for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 732-761 (2015) · Zbl 1425.65138
[41] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 5-8 (2010) · Zbl 1227.74068
[42] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5, 301-313 (2010) · Zbl 1227.65029
[43] Johannessen, K. A., Optimal quadrature for univariate and tensor product splines, Comput. Methods Appl. Mech. Engrg., 316, 84-99 (2017) · Zbl 1439.65014
[44] Auricchio, F.; Calabrò, F.; Hughes, T. J.R.; Reali, A.; Sangalli, G., A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249-252, 15-27 (2012) · Zbl 1348.65059
[45] Bartoň, M.; Ait-Haddou, R.; Calo, V. M., Gaussian quadrature rules for C^1 quintic splines with uniform knot vectors, J. Comput. Appl. Math., 322, 57-70 (2017) · Zbl 1365.65061
[46] Ait-Haddou, R.; Bartoň, M.; Calo, V. M., Explicit Gaussian quadrature rules for C^1 cubic splines with symmetrically stretched knot sequences, J. Comput. Appl. Math., 290, 543-552 (2015) · Zbl 1321.65037
[47] Bartoň, M.; Calo, V. M., Gaussian quadrature for splines via homotopy continuation: rules for C^2 cubic splines, J. Comput. Appl. Math., 296, 709-723 (2016) · Zbl 1342.65097
[48] Calabrò, F.; Sangalli, G.; Tani, M., Fast formation of isogeometric Galerkin matrices by weighted quadrature, Comput. Methods Appl. Mech. Engrg., 316, 606-622 (2017) · Zbl 1439.65012
[49] Schillinger, D.; Hossain, S. J.; Hughes, T. J.R., Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1-45 (2014) · Zbl 1425.65177
[50] Klinkel, S.; Chen, L.; Dornisch, W., A NURBS based hybrid collocation-Galerkin method for the analysis of boundary represented solids, Comput. Methods Appl. Mech. Engrg., 284, 689-711 (2015) · Zbl 1425.65166
[51] Schillinger, D.; Borden, M. J.; Stolarski, H. K., Isogeometric collocation for phase-field fracture models, Comput. Methods Appl. Mech. Engrg., 284, 583-610 (2015) · Zbl 1423.74848
[52] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J.R., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Eng., 267, 170-232 (2013) · Zbl 1286.65174
[53] Auricchio, F.; Beirao de Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamicsICES Report 12-07 (2012) · Zbl 1348.74305
[54] Auricchio, F.; Da Veiga, L. B.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[55] Johnson, R. W., Higher order B-spline collocation at the Greville abscissae, Appl. Numer. Math., 52, 1, 63-75 (2005) · Zbl 1063.65072
[56] Maurin, F.; Greco, F.; Coox, L.; Vandepitte, D.; Desmet, W., Isogeometric collocation for Kirchhoff-love plates and shells, Comput. Methods Appl. Mech. Engrg., 329, 396-420 (2018) · Zbl 1439.74449
[57] Zou, Z., Isogeometric Shell Analysis: Multi-patch Coupling and Overcoming Locking (2020), Brigham Young University: Brigham Young University Provo, (Ph.D. thesis)
[58] Gordon, W. J.; Riesenfeld, R. F., B-spline curves and surfaces, (Computer Aided Geometric Design (1974), Elsevier), 95-126
[59] Forsey, D. R.; Bartels, R. H., Hierarchical B-spline refinement, ACM SIGGRAPH Comput. Graph., 22, 4, 205-212 (1988)
[60] Bischoff, M.; Wall, W. A.; Bletzinger, K. U.; Ramm, E., Models and finite elements for thin-walled structures, (Stein, E.; de Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics, Vol. 2, Solids, Structures and Coupled Problems (2004), Wiley), 59-137
[61] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications: Dover Publications Mineola, NY · Zbl 1191.74002
[62] Gruttmann, F.; Sauer, R.; Wagner, W., Theory and numerics of three-dimensional beams with elastoplastic material behaviour, Internat. J. Numer. Methods Engrg., 48, 12, 1675-1702 (2000) · Zbl 0989.74069
[63] Hubrich, S.; Di Stolfo, P.; Kudela, L.; Kollmannsberger, S.; Rank, E.; Schröder, A.; Düster, A., Numerical integration of discontinuous functions: Moment fitting and smart octree, Comput. Mech., 60, 5, 863-881 (2017) · Zbl 1387.65025
[64] Joulaian, M.; Hubrich, S.; Düster, A., Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57, 6, 979-999 (2016) · Zbl 1382.65066
[65] Chui, C. K.; He, W.; Stöckler, J., Nonstationary tight wavelet frames, I: Bounded intervals, Appl. Comput. Harmon. Anal., 17, 2, 141-197 (2004) · Zbl 1067.42021
[66] Strang, G.; Fix, G., An Analysis of the Finite Element Method (2008), Wellesley-Cambridge Press: Wellesley-Cambridge Press Wellesley, Mass · Zbl 0278.65116
[67] Hughes, T. J.; Evans, J. A.; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290-320 (2014) · Zbl 1296.65148
[68] Thomas, D. C.; Scott, M. A.; Evans, J. A.; Tew, K.; Evans, E. J., Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis, Comput. Methods Appl. Mech. Eng., 284, 55-105 (2015) · Zbl 1425.65035
[69] Zou, Z.; Scott, M. A.; Borden, M. J.; Thomas, D. C.; Dornisch, W.; Brivadis, E., Isogeometric Bézier dual mortaring: refineable higher-order spline dual bases and weakly continuous geometry, Comput. Methods Appl. Mech. Engrg., 333, 497-534 (2018) · Zbl 1440.65240
[70] Miao, D.; Zou, Z.; Scott, M. A.; Borden, M. J.; Thomas, D. C., Isogeometric Bézier dual mortaring: the enriched Bézier dual basis with application to second- and fourth-order problems, Comput. Methods Appl. Mech. Engrg., 363, Article 112900 pp. (2020) · Zbl 1436.65187
[71] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), McGraw-Hill College: McGraw-Hill College New York · Zbl 0114.40801
[72] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23, 2021-2031 (2011) · Zbl 1228.65232
[73] Xu, G.; Mourrain, B.; Galligo, A.; Rabczuk, T., High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods, Comput. Mech., 54, 5, 1303-1313 (2014) · Zbl 1311.65020
[74] Matlab, version R2020a (9.8.0.1323502) (2020), The MathWorks Inc., Natick, Massachusetts
[75] Macneal, R.; Harder, R., A proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Des., 1, 1, 3-20 (1985)
[76] Greco, L.; Cuomo, M.; Contrafatto, L., A reconstructed local B̄ formulation for isogeometric Kirchhoff-Love shells, Comput. Methods Appl. Mech. Engrg., 332, 462-487 (2018) · Zbl 1440.74395
[77] Chapelle, D.; Bathe, K. J., Fundamental considerations for the finite element analysis of shell structures, Comput. Struct., 66, 1, 19-36 (1998) · Zbl 0934.74073
[78] Bathe, K.-J.; Iosilevich, A.; Chapelle, D., An evaluation of the MITC shell elements, Comput. Struct., 75, 1, 1-30 (2000)
[79] Chapelle, D.; Bathe, K.-J., The finite element analysis of shells: Fundamentals, (Computational Fluid and Solid Mechanics (2011), Springer: Springer Berlin ; New York) · Zbl 1103.74003
[80] Sze, K. Y.; Liu, X. H.; Lo, S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 11, 1551-1569 (2004)
[81] Duong, T. X.; Roohbakhshan, F.; Sauer, R. A., A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries, Comput. Methods Appl. Mech. Engrg., 316, 43-83 (2017) · Zbl 1439.74409
[82] MacNeal, R., Finite Elements: Their Design and Performance (1994), M. Dekker: M. Dekker New York
[83] Sauer, R. A.; Duong, T. X., On the theoretical foundations of thin solid and liquid shells, Math. Mech. Solids, 22, 3, 343-371 (2017) · Zbl 1373.74069
[84] Sauer, R. A.; Duong, T. X.; Corbett, C. J., A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements, Comput. Methods Appl. Mech. Engrg., 271, 48-68 (2014) · Zbl 1296.74126
[85] Dornisch, W.; Klinkel, S.; Simeon, B., Isogeometric Reissner-Mindlin shell analysis with exactly calculated director vectors, Comput. Methods Appl. Mech. Engrg., 253, 491-504 (2013) · Zbl 1297.74070
[86] Kiendl, J.; Hsu, M.-C.; Wu, M. C.H.; Reali, A., Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 291, 280-303 (2015) · Zbl 1423.74177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.