×

On the degree growth of birational mappings in higher dimension. (English) Zbl 1067.37054

Let \(f : \mathbb{C}^d \to \mathbb{C}^d\) be a birational map and \(\delta(f) := \lim_{n \to \infty} (\deg f^n)^{1/n}\) be its dynamical degree. We note again \(f\) the meromorphic extension to \(\mathbb{C}\mathbb{P}^d\). The authors compute \(\delta(f)\) for a class of maps of the form \(f = L \circ J\), where \(J(x_1,\ldots,x_d) = (x_1^{-1},\ldots,x_d^{-1})\) and \(L\) is an invertible linear map of \(\mathbb{C}^d\). The idea is to look at the action of \(f^*\) on the cohomology group \(H^{1,1}(\mathbb{C}\mathbb{P}^d)\). Indeed, when the identity \((f^*)^n = (f^n)^*\) holds on \(H^{1,1}(\mathbb{C}\mathbb{P}^d)\) (we say that \(f\) is \(1\)-regular), then \(\delta(f)\) is the spectral radius of the linear map \(f^*\). When \(f\) is not \(1\)-regular, one may regularize \(f\), i.e., find a birational equivalence \(h : \mathbb{C}\mathbb{P}^d \to X\) such that \(\tilde f := h \circ f \circ h^{-1}\) is \(1\)-regular on \(X\). J. Diller and C. Favre proved that this operation is always possible in dimension \(2\) [Am. J. Math. 123, 1135–1169 (2001; Zbl 1112.37308)]. The authors consider the problem in higher dimension. They regularize some maps of the form \(L \circ J\), called “elementary”. The interplay between the dynamics of the indeterminacy set and the exceptional set is crucial. They focus on the exceptional varieties that are mapped by some iterate of \(f\) on a point of inderminacy : it gives rise to a so-called “singular” orbit. A map \(f\) is said elementary if it is a local biholomorphism at each point of the singular orbit. The regularization of an elementary map is obtained by blowing up the points of the singular orbits. The spectral radius of the regularized map depends only on two lists \(\mathcal{L}^o , \mathcal{L}^c\) of positive integers determined by the set of singular orbits. Note that most of the maps considered in this article appear naturally in mathematical physics literature.

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
14E05 Rational and birational maps

Citations:

Zbl 1112.37308

References:

[1] Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Rational dynamical zeta functions for birational transformations,Phys. A,264, 264–293, (1999). · doi:10.1016/S0378-4371(98)00452-X
[2] Abarenkova, N., Anglès d’Auriac, J.C-., Boukraa, S., and Maillard, J.-M. Growth-complexity spectrum of some discrete dynamical systems,Phys. D,130, 27–42, (1999). · Zbl 0940.37017 · doi:10.1016/S0167-2789(99)00014-7
[3] Bedford, E. On the dynamics of birational mappings of the plane,J. Korean Math. Soc,40, 373–390, (2003). · Zbl 1111.37303 · doi:10.4134/JKMS.2003.40.3.373
[4] Bellon, M.P., Maillard, J.-M., and Viallet, C.-M. Integrable coxeter groups,Phys. Lett. A,159, 221–232, (1991). · doi:10.1016/0375-9601(91)90516-B
[5] Bellon, M.P. and Viallet, C.-M. Algebraic entropy,Comm. Math. Phys.,204, 425–437, (1999). · Zbl 0987.37007 · doi:10.1007/s002200050652
[6] Bernardo, M., Truong, T.T., and Rollet, G. The discrete Painlevé I equations: Transcendental integrability and asymptotic solutions,J Phys. A: Math. Gen.,34, 3215–3252, (2001). · Zbl 1057.39009 · doi:10.1088/0305-4470/34/15/303
[7] Boukraa, S., Hassani, S., and Maillard, J.-M. Noetherian mappings,Phys. D,185(1), 3–44, (2003). · Zbl 1078.37035 · doi:10.1016/S0167-2789(03)00177-5
[8] Boukraa, S. and Maillard, J.-M. Factorization properties of birational mappings,Phys. A,220, 403–470, (1995). · doi:10.1016/0378-4371(95)00220-2
[9] Diller, J. and Favre, C. Dynamics of bimeromorphic maps of surfaces,Am. J. Math.,123, 1135–1169, (2001). · Zbl 1112.37308 · doi:10.1353/ajm.2001.0038
[10] Dinh, T.-C. and Sibony, N. Une borne supérieure pour l’entropie topologique d’une application rationnelle, arXiv:math.DS/0303271.
[11] Falqui, G. and Viallet, C.-M. Singularity, complexity, and quasi-integrability of rational mappings,Comm. Math. Phys.,154, 111–125, (1993). · Zbl 0791.58116 · doi:10.1007/BF02096835
[12] Fornæss, J.-E. and Sibony, N. Complex dynamics in higher dimension: II,Annals Math. Stud.,137, 135–182, Princeton University Press, (1995). · Zbl 0847.58059
[13] Guedj, V. Dynamics of polynomial mappings of C2,Am. J. Math.,124, 75–106, (2002). · Zbl 1198.32007 · doi:10.1353/ajm.2002.0002
[14] Harvey, F.R. and Polking, J. Extending analytic objects,Comm. Pure Appl. Math.,28, 701–727, (1975). · Zbl 0323.32013 · doi:10.1002/cpa.3160280603
[15] Ramani, A., Grammaticos, B., Maillard, J.-M., and Rollet, G. Integrable mappings from matrix transformations and their singularity properties,J. Phys. A: Math. Gen.,27, 7597–7613, (1994). · Zbl 0847.58067 · doi:10.1088/0305-4470/27/23/009
[16] Rerikh, K.V. Cremona transformation and general solution of one dynamical system of the static model,Physica D,57, 337–354, (1992). · Zbl 0759.39003 · doi:10.1016/0167-2789(92)90007-A
[17] Rerikh, K.V. Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th Hilbert problem (non-resonant case),Physica D,82, 60–78, (1995). · Zbl 0888.58054 · doi:10.1016/0167-2789(94)00231-E
[18] Rerikh, K.V. Nonalgebraic integrability of one reversible dynamical system of the Cremona type,J. Math. Phys.,39, 2821–2832, (1998). · Zbl 1004.37030 · doi:10.1063/1.532435
[19] Russakovskii, A. and Shiffman, B. Value distribution of sequences of rational mappings and complex dynamics,Indiana U. Math. J.,46, 897–932, (1997). · Zbl 0901.58023 · doi:10.1512/iumj.1997.46.1441
[20] Sibony, N. Dynamique des applications rationnelles de Pk,Pano. Synth.,8, 97–185, (1999). · Zbl 1020.37026
[21] Viallet, C. On some rational Coxeter groups, Centre de Recherches Mathématiques,CRM Proceedings and Lecture Notes,9, 377–388, (1996). · Zbl 0863.20016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.