×

Cartan rediscovered in general relativity. (English) Zbl 1515.83036

Summary: Élie Cartan’s invariant integral formalism is extended to gauge field theory, including general relativity. This constitutes an alternative procedure, as shown in several examples, that is equivalent when no second class constraints are present to the Rosenfeld, Bergmann, Dirac algorithm. In addition, a Hamilton-Jacobi formalism is developed for constructing explicit phase space functions in general relativity that are invariant under the full four-dimensional diffeomorphism group. These identify equivalence classes of classical solutions of Einstein’s equations. Each member is dependent on intrinsic spatial coordinates and also undergoes non-trivial evolution in intrinsic time. Furthermore, the construction yields series expansion solutions of the field equations for all of the components of the metric tensor, including lapse and shift, in the intrinsic temporal and spatial coordinates. The intrinsic coordinates are determined by the spacetime geometry in terms of Weyl scalars. The implications of this analysis for an eventual quantum theory of gravity are profound.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
47A46 Chains (nests) of projections or of invariant subspaces, integrals along chains, etc.
70H45 Constrained dynamics, Dirac’s theory of constraints
70H20 Hamilton-Jacobi equations in mechanics
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
83C45 Quantization of the gravitational field
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
Full Text: DOI

References:

[1] Bergmann, PG, Introduction to the Theory of Relativity (1942), New York: Prentice Hall, New York · JFM 68.0633.01
[2] Bergmann, PG, Hamilton-Jacobi and Schrödinger theory in theories with first-class Hamiltonian constraints, Phys. Rev., 144, 4, 1078-1080 (1966) · doi:10.1103/PhysRev.144.1078
[3] Bergmann, P.G.: Geometry and observables. In: Earman, J., Glymour, C.N., Stachel, J.J., (eds) Foundations of Space-Time Theories, pp. 275-280 (1977)
[4] Bergmann, P.G.: The fading world point. In: Bergmann, P.G., Sabbata, V.D. (eds) Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, pp. 173-176 (1979)
[5] Bergmann, PG; de Sabbata, V.; Melnikov, VN, Observables in general relativity, Gravitational Measurements, Fundamental Metrology and Constants, 15-18 (1988), New York: Kluwer Academic Publisher, New York · doi:10.1007/978-94-009-2955-5_2
[6] Bergmann, P.G., Komar, A.: The phase space formulation of general relativity and approaches toward its canonical quantization. In: Held, A. (ed) General Relativity and Gravitation, pp. 227-254 (1980)
[7] Bergmann, P.G., Komar, A.B.: Observables and commutation relations. In: Lichnerowicz, A., Tonnelat, M.A. (eds.) Les Théories Relativiste de la Gravitation, Royaumont 21-27 Juin, 1959, pp. 309-325. Centre National de la Recherche Scientifique (1962)
[8] Bergmann, PG; Komar, AB; Infeld, L., Status report on the quantization of the gravitational field, Recent Developments in General Relativity, 31-46 (1962), Oxford: Pergamon Press, Oxford
[9] Cartan, E., Leçons sur les Invariants Intégraux (1922), Hermann et Fils: Librairie Scientifique A, Hermann et Fils · JFM 48.0538.02
[10] Cartan, E.: Lessons on Integral Invariants. Hermann (1922) · JFM 48.0538.02
[11] Castellani, L., Symmetries in constrained hamiltonian systems, Ann. Phys., 143, 357-371 (1982) · doi:10.1016/0003-4916(82)90031-8
[12] Chataignier, L., On the construction of quantum Dirac observables and the emergence of WKB time, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.086001
[13] Chataignier, L., Relational observables, reference frames, and conditional probabilities, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.026013
[14] Christodoulou, M.; Rovelli, C., On the possibility of laboratory evidence for quantum superposition of geometries, Phys. Lett. B, 792, 64-68 (2019) · doi:10.1016/j.physletb.2019.03.015
[15] Danieli, A.: ADM formalism: a Hamiltonian approach to general relativity. Master’s thesis, Università degli Studi di Milano (2020)
[16] Deriglazov, A., Classical Mechanics (2017), Hamiltonian, Larangian Formalism: Springer, Hamiltonian, Larangian Formalism · Zbl 1364.70001 · doi:10.1007/978-3-319-44147-4
[17] DeWitt, B.S.: The quantization of geometry. In: Witten, L. (ed) LL, pp. 266-381 (1962)
[18] Dittrich, B., Partial and complete observables for Hamiltonian constrained systems, Gen. Relativ. Gravit., 39, 1891-1927 (2007) · Zbl 1145.83015 · doi:10.1007/s10714-007-0495-2
[19] Dominici, D.; Gomis, J., Poincaré-cartan integral invariant and canonical transformations for singular Lagrangians, J. Math. Phys., 21, 2124-2130 (1980) · Zbl 0448.70017 · doi:10.1063/1.524721
[20] Giddings, SB; Marolf, D.; Hartle, JB, Observables in effective gravity, Phys. Rev. D, 74, 064018-1-20 (2006) · doi:10.1103/PhysRevD.74.064018
[21] Griffiths, D., Introduction to Electrodynamics (1999), New York: Prentice Hall, New York
[22] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems (1992), Princeton: Princeton University Press, Princeton · Zbl 0838.53053 · doi:10.1515/9780691213866
[23] Jacobi, CGJ, Über die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwishen irgend einer Zahl Variabeln auf die Integration eines einzigen Systems gewöhnlicher Differentialgleichungen, Crelle Journal für die reine und angewandte Mathematik, 17, 97-162 (1837) · ERAM 017.0562cj
[24] Kiefer, C., Quantum Gravity (2012), Oxford: Oxford University Press, Oxford · Zbl 1243.83002
[25] Kiefer, C., The semiclassical approximation to quantum gravity and its observational consequences, J. Phys. Conf. Ser., 442, 012025-1-012025-7 (2013) · doi:10.1088/1742-6596/442/1/012025
[26] Kiefer, C., Wichmann, D.: Semiclassical approximation of the Wheeler-Dewitt equation: arbitrary orders and the question of unitarity (2018). arXiv:1802.01422v2 [quant-ph] · Zbl 1392.83034
[27] Komar, AB, Construction of a complete set of independent observables in the general theory of relativity, Phys. Rev., 111, 4, 1182-1187 (1958) · Zbl 0082.21003 · doi:10.1103/PhysRev.111.1182
[28] Komar, AB, Hamilton-Jacobi quantization of general relativity, Phys. Rev., 153, 5, 1385-1387 (1967) · Zbl 0144.23402 · doi:10.1103/PhysRev.153.1385
[29] Komar, AB, Hamilton-Jacobi version of general relativity, Phys. Rev., 170, 5, 1195-1200 (1968) · doi:10.1103/PhysRev.170.1195
[30] Komar, AB, New properties of the Hamilton-Jacobi functional for general relativity, Phys. Rev. D, 1, 6, 1521-1523 (1970) · doi:10.1103/PhysRevD.1.1521
[31] Marolf, D., Observables and a Hilbert space for Bianchi IX, Class. Quantum Gravity, 12, 1441-1454 (1995) · Zbl 0823.53068 · doi:10.1088/0264-9381/12/6/010
[32] Marolf, D., Quantum observables and recollapsing dynamics, Class. Quantum Gravity, 12, 1199-1220 (1995) · Zbl 0839.47048 · doi:10.1088/0264-9381/12/5/011
[33] Newton, TD; Wigner, EP, Localized states for elementary systems, Rev. Mod. Phys., 21, 3, 400-406 (1949) · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400
[34] Pitts, JB, Peter Bergmann on observables in Hamiltonian general relativity: a historical-critical investigation, Stud. Hist. Philos. Sci., 95, 1-27 (2022) · doi:10.1016/j.shpsa.2022.06.012
[35] Pons, J., Salisbury, D.: The gauge group in the Ashtekar-Barbero formulation of canonical gravity. In: Gurzadyan, V., Jantzen, R.T., Ruffini, R. (eds) Proceedings of the Ninth Marcel Grossmann Meeting, pp. 1298-1299 (2002)
[36] Pons, J.; Salisbury, D., The issue of time in generally covariant theories and the Komar-Bergmann approach to observables in general relativity, Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.124012
[37] Pons, J.; Salisbury, D.; Shepley, L., Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories, Phys. Rev. D, 55, 658-668 (1997) · doi:10.1103/PhysRevD.55.658
[38] Pons, J.; Salisbury, D.; Shepley, L., The gauge group and the reality conditions in Ashtekar’s formulation of general relativity, Phys. Rev. D, 62, 064026-064040 (2000) · doi:10.1103/PhysRevD.62.064026
[39] Pons, J.; Salisbury, D.; Shepley, L., The gauge group in the real triad formulation of general relativity, Gen. Relativ. Gravit., 32, 1727-1744 (2000) · Zbl 0963.83009 · doi:10.1023/A:1001946521258
[40] Pons, J.; Salisbury, D.; Shepley, L., Gauge transformations in Einstein-Yang-Mills theories, J. Math. Phys., 41, 8, 5557-5571 (2000) · Zbl 0977.83005 · doi:10.1063/1.533425
[41] Pons, J.; Salisbury, D.; Sundermeyer, K., Gravitational observables, intrinsic coordinates, and canonical maps, Mod. Phys. Lett. A, 24, 725-732 (2009) · Zbl 1170.83392 · doi:10.1142/S0217732309030473
[42] Pons, J.; Salisbury, D.; Sundermeyer, K., Revisiting observables in generally covariant theories in light of gauge fixing methods, Phys. Rev. D, 80, 084015-1-084015-23 (2009) · doi:10.1103/PhysRevD.80.084015
[43] Rosenfeld, L., Zur Quantelung der Wellenfelder, Ann. Phys., 5, 113-152 (1930) · JFM 56.1303.01 · doi:10.1002/andp.19303970107
[44] Rosenfeld, L., On the quantization of wave fields, Eur. Phys. J. H, 42, 63-94 (2017) · doi:10.1140/epjh/e2016-70041-3
[45] Rovelli, C., Time in quantum gravity: an hypothesis, Phys. Rev. D, 43, 2, 442-456 (1991) · doi:10.1103/PhysRevD.43.442
[46] Rovelli, C., Partial observables, Phys. Rev. D, 65, 124013-1-124013-8 (2002) · doi:10.1103/PhysRevD.65.124013
[47] Salisbury, D.; Blum, A.; Lalli, R.; Renn, J., Toward a quantum theory of gravity: Syracuse 1949-1962, The Renaissance of General Relativity in Context, 221-255 (2020), New York: Birkhäuser, New York · Zbl 1472.83008 · doi:10.1007/978-3-030-50754-1_7
[48] Salisbury, D., A history of observables and Hamilton-Jacobi approaches to general relativity, Eur. Phys. J. H, 47, 1-38 (2022) · doi:10.1140/epjh/s13129-022-00039-8
[49] Salisbury, D.: A new approach to classical Einstein-Yang-Mills theory. To appear in Particles, Fields and Topology: A Celebration of A.P. Balachandran (2023)
[50] Salisbury, D.; Renn, J.; Sundermeyer, K., Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: an intrinsic Hamilton-Jacobi approach, Int. J. Mod. Phys. A, 31, 6, 1650014 (2016) · Zbl 1381.81087 · doi:10.1142/S0217751X16500147
[51] Salisbury, D.; Renn, J.; Sundermeyer, K., Erratum. Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: an intrinsic Hamilton-Jacobi approach, Int. J. Mod. Phys. A, 33, 2, 1892001 (2018) · Zbl 1381.81088 · doi:10.1142/S0217751X1892001X
[52] Salisbury, D., Sundermeyer, K.: Léon Rosenfeld’s general theory of constrained Hamiltonian dynamics. Eur. Phys. J. H 1-39 (2017)
[53] Salisbury, DC; Helpert, J.; Schmitz, A., Reparameterization invariants for anisotropic Bianchi I cosmology with a massless scalar source, Gen. Relativ. Gravit., 40, 1475-1498 (2008) · Zbl 1148.83349 · doi:10.1007/s10714-007-0541-0
[54] Tsamis, NC; Woodard, RP, Gauge problems with the equations of motion, Class. Quantum Gravity, 2, 841-867 (1985) · doi:10.1088/0264-9381/2/6/011
[55] Wald, RM, General Relativity (1984), Chicago: University of Chicago Press, Chicago · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[56] Woodard, RP, Enforcing the Wheeler-Dewitt constraint the easy way, Class. Quantum Gravity, 10, 483-496 (1993) · doi:10.1088/0264-9381/10/3/008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.