×

Gravity with torsion in non-conservative Maxwell-like gauge approach. (English) Zbl 1376.83030

Summary: In this work, we take into consideration a generalization of Gauge Theories based on the analysis of the structural characteristics of Maxwell theory, which can be considered as the prototype of such kind of theories (Maxwell-like). Such class of theories is based on few principles related to different orders of commutators between covariant derivatives. Their physical meaning is very simple, and lies in stating that the local transformations of a suitable substratum (the space-time or a particular phase space) and the imposed constraints define a “compensative mechanism” or the “interaction” we want to characterize. After a mathematical introduction, we apply this approach to a modified theory of gravity, in which the algebra of operators of covariant derivatives leads to an additional term in the equation of motion associated with the non-conservation of the energy-momentum tensor. This offers the possibility to include, without ad hoc physical assumptions and directly from the formalism, new forms of coupling between matter and energy and the expression of the mixing between gravity and torsion.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C22 Einstein-Maxwell equations
53Z05 Applications of differential geometry to physics

References:

[1] Noether, E., Invariante variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen235 (1918) 235-257. · JFM 46.0770.01
[2] Quigg, C., Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2nd edn. (Princeton University Press, 2013). · Zbl 1278.81012
[3] Healey, R., Gauging What’s Real: The Conceptual Foundations of Contemporary Gauge Theories (Oxford University Press, 2009). · Zbl 1179.81003
[4] Mignani, R., Pessa, E. and Resconi, G., Non-conservative gravitational equation, Gen. Relativ. Gravit.29(8) (1997) 1049-1073. · Zbl 0901.53074
[5] Mignani, R., Pessa, E. and Resconi, G., Electromagnetic-like generation of unified-gauge theories, Phys. Essay12(1) (1999) 62-79.
[6] Daouda, M. Hamani, Rodrigues, M. E. and Houndjo, M. J. S., New black holes solutions in a modified gravity, ISRN Astron. Astrophys.2011 (2011) 341919.
[7] Licata, I., Methexis, mimesis and self duality: Theoretical physics as formal systems, Versus118 (2014) 119-140.
[8] de Wit, B., Nicolai, H. and Samtleben, H., Gauged supergravities, tensor hierarchies, and M-theory, J. High Energy Phys.02 (2008) 044.
[9] Gutfreund, H. and Renn, J., The Road to Relativity \(:\) The History and Meaning of Einstein’s “The Foundation of General Relativity”, Featuring the Original Manuscript of Einstein’s Masterpiece (Princeton University Press, 2015). · Zbl 1367.83003
[10] L. Smolin, Lessons from Einstein’s 1915 discovery of general relativity, preprint (2015), arXiv:1512.07551 [physics.hist-ph].
[11] Pitts, J. Brian, Universally coupled massive gravity, III: dRGT-Maheshwari pure spin-2, Ogievetsky-Polubarinov and arbitrary mass terms, Ann. Phys.365 (2016) 73. · Zbl 1342.83286
[12] Duetsch, M., Massive vector bosons: Is the geometrical interpretation as a spontaneously broken gauge theory possible at all scales?Rev. Math. Phys.27(10) (2016) 1550024. · Zbl 1331.81208
[13] M. Duetsch, Higgs mechanism and renormalization group flow: Are they compatible? preprint (2015), arXiv:1502.00099 [hep-th].
[14] E. Pessa, The concept of particle in quantum field theory, in Vision of Oneness, eds. I. Licata and A. Sakaji (Aracne, Rome, 2011), also in preprint (2009), arXiv:0907.0178 [physics.gen-ph].
[15] Colosi, D. and Rovelli, C., What is a particle?Class. Quantum Grav.26 (2009) 025002. · Zbl 1158.83310
[16] Davies, P., Particles do not exist, in ed. Christensen, S. M., Quantum Theory of Gravity (Adam Hilger, 1984), p. 66.
[17] Manning, A. G., Khakimov, R. I., Dall, R. G. and Truscott, A. G., Wheeler’s delayed-choice gedanken experiment with a single atom, Nature Phys.11 (2015) 539.
[18] Butterfield, J., Reduction, emergence and renormalization, J. Philos.111 (2014) 5.
[19] Meschini, D., Planck-scale physics: Facts and beliefs, Found. Sci.12(4) (2007) 277. · Zbl 1148.83314
[20] Blasone, M., Jizba, P., Scardigli, F. and Vitiello, G., Dissipation and quantization for composite systems, Phys. Lett. A373 (2009) 4106. · Zbl 1234.81094
[21] Yang, C. Nin, Einstein’s impact on theoretical physics, Phys. Today33 (1980) 42.
[22] Capozziello, S. and DeLaurentis, M., Extended theories of gravity, Phys. Rep.509 (2011) 4-5.
[23] Resconi, G., Licata, I. and Fiscaletti, D., Unification of quantum and gravity by non classical information entropy space, Entropy15(9) (2013) 3602. · Zbl 1339.83070
[24] Resconi, G. and Licata, I., Beyond an input/output paradigm for systems: Design systems by intrinsic geometry, Systems2(4) (2014) 661.
[25] Corda, C., Interferometric detection of gravitational waves: The definitive test for general relativity, Int. J. Mod. Phys. D18 (2009) 2275-2282. · Zbl 1183.83033
[26] Cartan, E., Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris)174 (1922) 593. · JFM 48.0854.02
[27] E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée, Part I, Ann. Éc. Norm.40 (1923) 325; Ann. Éc. Norm.41 (1924) 1; Sur les varietés à Connexion affire et la théorie de la relativité généraliśee, Part II, Ann. Éc. Norm.42 (1925) 17.
[28] Kibble, T. W. B., Lorentz invariance and the gravitational field, J. Math. Phys.2 (1961) 212. · Zbl 0095.22903
[29] E. Einstein, Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus, Preussische Akademie der Wissenschaften, Phys.-math. Klasse, Sitzungsberichte 217 (1928). · JFM 54.0942.04
[30] Popławski, N., Nonsingular, big-bounce cosmology from spinor-torsion coupling, Phys. Rev. D85 (2012) 107502.
[31] Hammond, R. T., The necessity of torsion in gravity, Int. J. Mod. Phys. D19 (2010) 2413. · Zbl 1213.83113
[32] H. Kleinert, The invisibility of torsion in gravity, users.physik.fu-berlin.de/˜kleinert/386/386.pdf. · Zbl 1225.83021
[33] Mukhi, S., Unravelling the novel Higgs mechanism in \((2 + 1)\) d Chern-Simons theories, J. High Energy Phys.83 (2011). · Zbl 1306.81424
[34] L. Lorenz, Phil. Mag.34 (1867) 287.
[35] Mignani, R., Pessa, E. and Resconi, G., Nuovo Cimento B108 (1993) 1319.
[36] J. Kepler, De nive sexangula (On the Six-Cornered Snowflake, 1611).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.