×

Ground states and hyperuniformity of the hierarchical Coulomb gas in all dimensions. (English) Zbl 1457.60142

Summary: Stochastic point processes with Coulomb interactions arise in various natural examples of statistical mechanics, random matrices and optimization problems. Often such systems due to their natural repulsion exhibit remarkable hyperuniformity properties, that is, the number of points landing in any given region fluctuates at a much smaller scale compared to that of a set of i.i.d. random points. A well known conjecture from physics appearing in [B. Jancovici et al., J. Stat. Phys. 72, No. 3–4, 773–787 (1993; Zbl 1101.82307); J. L. Lebowitz, “Charge fluctuations in Coulomb systems”, Phys. Rev. A (3) 27, No. 3, 1491–1494 (1983; doi:10.1103/physreva.27.1491); P.. A. Martin and T. Yalcin, “The charge fluctuations in classical Coulomb systems”, J. Stat. Phys. 22, No. 4, 435–463 (1980; doi:10.1007/bf01012866)] states that the variance of the number of points landing in a set should grow like the surface area instead of the volume unlike i.i.d. random points. In a recent beautiful work [Probab. Theory Relat. Fields 175, No. 3–4, 1123–1176 (2019; Zbl 1423.60152)], S. Chatterjee gave the first proof of such a result in dimension three for a Coulomb type system, known as the hierarchical Coulomb gas, inspired by F. J. Dyson’s hierarchical model of the Ising ferromagnet [Phys. Rev., II. Ser. 92, 1331–1338 (1953; Zbl 0052.23704); Commun. Math. Phys. 12, 91–107 (1969; Zbl 1306.47082)]. However the case of dimensions greater than three had remained open. In this paper, we establish the correct fluctuation behavior up to logarithmic factors in all dimensions greater than three, for the hierarchical model. Using similar methods, we also prove sharp variance bounds for smooth linear statistics which were unknown in any dimension bigger than two. A key intermediate step is to obtain precise results about the ground states of such models whose behavior can be interpreted as hierarchical analogues of various crystalline conjectures predicted for energy minimizing systems, and could be of independent interest.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B05 Classical equilibrium statistical mechanics (general)
60C05 Combinatorial probability

References:

[1] Serfaty, S.: Systems of points with Coulomb interactions (2017). arXiv preprint. arXiv:1712.04095 · Zbl 1417.81166
[2] Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010) · Zbl 1184.15023
[3] Forrester, P.J.: Random matrices, log-gases and the Calogero-Sutherland model, volume Volume 1 of MSJ Memoirs, pp. 97-181. The Mathematical Society of Japan, Tokyo, Japan (1998) · Zbl 1065.82010
[4] Ben Arous, G.; Zeitouni, O., Large deviations from the circular law, ESAIM Probab. Statist., 2, 123-134 (1998) · Zbl 0916.60022
[5] Petz, D., Hiai, F.: Logarithmic energy as an entropy functional. In: Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997), volume 217 of Contemp. Math., pp. 205-221. Amer. Math. Soc., Providence, RI (1998) · Zbl 0893.15011
[6] Hardy, A., A note on large deviations for 2D Coulomb gas with weakly confining potential, Electron. Commun. Probab., 17, 19, 12 (2012) · Zbl 1258.60027
[7] Chafaï, D.; Gozlan, N.; Zitt, P-A, First-order global asymptotics for confined particles with singular pair repulsion, Ann. Appl. Probab., 24, 6, 2371-2413 (2014) · Zbl 1304.82050
[8] Serfaty, S., Ginzburg-Landau vortices, Coulomb gases, and renormalized energies, J. Stat. Phys., 154, 3, 660-680 (2014) · Zbl 1291.82142
[9] Chafaï, D.; Hardy, A.; Maïda, M., Concentration for Coulomb gases and Coulomb transport inequalities, J. Funct. Anal., 275, 6, 1447-1483 (2018) · Zbl 1407.82045
[10] García-Zelada, D.: Concentration for Coulomb gases on compact manifolds. Electron. Commun. Probab. 24:Paper No. 12, 18 (2019) · Zbl 1412.60011
[11] Costin, O.; Lebowitz, JL, Gaussian fluctuation in random matrices, Phys. Rev. Lett., 75, 69-72 (1995)
[12] Diaconis, P.; Evans, SN, Linear functionals of eigenvalues of random matrices, Trans. Am. Math. Soc., 353, 7, 2615-2633 (2001) · Zbl 1008.15013
[13] Pastur, L., Limiting laws of linear eigenvalue statistics for Hermitian matrix models, J. Math. Phys., 47, 10, 103303, 22 (2006) · Zbl 1112.82022
[14] Bourgade, P.; Erdős, L.; Yau, H-T, Bulk universality of general \(\beta \)-ensembles with non-convex potential, J. Math. Phys., 53, 9, 095221, 19 (2012) · Zbl 1278.82032
[15] Bourgade, P.; Erdős, L.; Yau, H-T, Universality of general \(\beta \)-ensembles, Duke Math. J., 163, 6, 1127-1190 (2014) · Zbl 1298.15040
[16] Bourgade, P.; Erdös, L.; Yau, H-T, Edge universality of beta ensembles, Commun. Math. Phys., 332, 1, 261-353 (2014) · Zbl 1306.82010
[17] Ghosh, S., Determinantal processes and completeness of random exponentials: the critical case, Probab. Theory Related Fields, 163, 3-4, 643-665 (2015) · Zbl 1334.60083
[18] Tao, T.; Van, V., Random matrices: sharp concentration of eigenvalues, Random Matrices Theory Appl., 2, 3, 1350007, 31 (2013) · Zbl 1296.15022
[19] Erdős, L.; Yau, H-T; Yin, J., Rigidity of eigenvalues of generalized wigner matrices, Adv. Math., 229, 3, 1435-1515 (2012) · Zbl 1238.15017
[20] Borodin, A.; Sinclair, CD, The Ginibre ensemble of real random matrices and its scaling limits, Commun. Math. Phys., 291, 1, 177-224 (2009) · Zbl 1184.82004
[21] Bourgade, P.; Yau, H-T; Yin, J., Local circular law for random matrices, Probab. Theory Related Fields, 159, 3-4, 545-595 (2014) · Zbl 1301.15021
[22] Bourgade, P.; Yau, H-T; Yin, J., The local circular law II: the edge case, Probab. Theory Related Fields, 159, 3-4, 619-660 (2014) · Zbl 1342.15028
[23] Ghosh, S.; Peres, Y., Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues, Duke Math. J., 166, 10, 1789-1858 (2017) · Zbl 1405.60067
[24] Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian analytic functions and determinantal point processes, volume 51 of University Lecture Series. American Mathematical Society, Providence, RI (2009) · Zbl 1190.60038
[25] Nazarov, F.; Sodin, M., Fluctuations in random complex zeroes: asymptotic normality revisited, Int. Math. Res. Not. IMRN, 24, 5720-5759 (2011) · Zbl 1242.60051
[26] Ghosh, S.: Palm measures and rigidity phenomena in point processes. Electron. Commun. Probab. 21:Paper No. 85, 14 (2016) · Zbl 1354.60055
[27] Ghosh, S., Zeitouni, O.: Large deviations for zeros of random polynomials with i.i.d. exponential coefficients. Int. Math. Res. Not. IMRN (5):1308-1347 (2016) · Zbl 1336.60053
[28] Ghosh, S.; Lebowitz, J., Number rigidity in superhomogeneous random point fields, J. Stat. Phys., 166, 3-4, 1016-1027 (2017) · Zbl 1362.60047
[29] Peres, Y., Sly, A.: Rigidity and tolerance for perturbed lattices (2014). arXiv preprint. arXiv:1409.4490
[30] Holroyd, AE; Soo, T., Insertion and deletion tolerance of point processes, Electron. J. Probab., 18, 74, 24 (2013) · Zbl 1291.60101
[31] Bauerschmidt, R.; Bourgade, P.; Nikula, M.; Yau, H-T, Local density for two-dimensional one-component plasma, Commun. Math. Phys., 356, 1, 189-230 (2017) · Zbl 1383.82056
[32] Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional coulomb plasma: quasi-free approximation and central limit theorem (2016). arXiv preprint arXiv:1609.08582
[33] Leblé, T.; Serfaty, S., Fluctuations of two dimensional Coulomb gases, Geom. Funct. Anal., 28, 2, 443-508 (2018) · Zbl 1423.60045
[34] Rougerie, N.; Serfaty, S., Higher-dimensional Coulomb gases and renormalized energy functionals, Commun. Pure Appl. Math., 69, 3, 519-605 (2016) · Zbl 1338.82043
[35] Leblé, T.; Serfaty, S., Large deviation principle for empirical fields of log and Riesz gases, Invent. Math., 210, 3, 645-757 (2017) · Zbl 1397.82007
[36] Ghosh, S.; Lebowitz, JL, Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey, Indian J. Pure Appl. Math., 48, 4, 609-631 (2017) · Zbl 1390.60104
[37] Martin, PA; Yalcin, T., The charge fluctuations in classical Coulomb systems, J. Stat. Phys., 22, 4, 435-463 (1980)
[38] Martin, PA, Sum rules in charged fluids, Rev. Mod. Phys., 60, 4, 1075-1127 (1988)
[39] Lebowitz, JL, Charge fluctuations in Coulomb systems, Phys. Rev. A, 27, 1491-1494 (1983)
[40] Theil, F., A proof of crystallization in two dimensions, Commun. Math. Phys., 262, 1, 209-236 (2006) · Zbl 1113.82016
[41] Bourne, DP; Peletier, MA; Theil, F., Optimality of the triangular lattice for a particle system with Wasserstein interaction, Commun. Math. Phys., 329, 1, 117-140 (2014) · Zbl 1294.82006
[42] Heitmann, RC; Radin, C., The ground state for sticky disks, J. Stat. Phys., 22, 3, 281-287 (1980)
[43] Sütő, A., Crystalline ground states for classical particles, Phys. Rev. Lett., 95, 265501 (2005)
[44] Radin, C., The ground state for soft disks, J. Stat. Phys., 26, 2, 365-373 (1981)
[45] Beltrán, C.; Hardy, A., Energy of the Coulomb gas on the sphere at low temperature, Arch. Ration. Mech. Anal., 231, 3, 2007-2017 (2019) · Zbl 1435.82017
[46] Smale, S.: Mathematical problems for the next century. In: Mathematics: Frontiers and Perspectives, pp. 271-294. Amer. Math. Soc., Providence, RI (2000) · Zbl 1031.00005
[47] Chatterjee, S.: Rigidity of the three-dimensional hierarchical coulomb gas (2017). arXiv preprint. arXiv:1708.01965, To appear in Probability Theory and Related Fields
[48] Jancovici, B.; Lebowitz, JL; Manificat, G., Large charge fluctuations in classical Coulomb systems, J. Stat. Phys., 72, 3-4, 773-787 (1993) · Zbl 1101.82307
[49] Dyson, FJ, The dynamics of a disordered linear chain, Phys. Rev., 92, 1331-1338 (1953) · Zbl 0052.23704
[50] Dyson, FJ, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Commun. Math. Phys., 12, 2, 91-107 (1969) · Zbl 1306.47082
[51] Benfatto, G.; Gallavotti, G.; Nicolò, F., The dipole phase in the two-dimensional hierarchical Coulomb gas: analyticity and correlations decay, Commun. Math. Phys., 106, 2, 277-288 (1986) · Zbl 0646.76091
[52] Marchetti, DHU; Fernando Perez, J., The Kosterlitz-Thouless phase transition in two-dimensional hierarchical Coulomb gases, J. Stat. Phys., 55, 1-2, 141-156 (1989)
[53] Dimock, J., The Kosterlitz-Thouless phase in a hierarchical model, J. Phys. A Math. Gen., 23, 7, 1207-1215 (1990) · Zbl 0709.60110
[54] Kappeler, T.; Pinn, K.; Wieczerkowski, C., Renormalization group flow of a hierarchical sine-Gordon model by partial differential equations, Commun. Math. Phys., 136, 2, 357-368 (1991) · Zbl 0729.35128
[55] Benfatto, G.; Renn, J., Nontrivial fixed points and screening in the hierarchical two-dimensional Coulomb gas, J. Stat. Phys., 67, 5-6, 957-980 (1992) · Zbl 0925.82085
[56] Guidi, LF; Marchetti, DHU, Renormalization group flow of the two-dimensional hierarchical Coulomb gas, Commun. Math. Phys., 219, 3, 671-702 (2001) · Zbl 1018.82006
[57] Johansson, K., On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 1, 151-204 (1998) · Zbl 1039.82504
[58] Johansson, K.; Lambert, G., Gaussian and non-Gaussian fluctuations for mesoscopic linear statistics in determinantal processes, Ann. Probab., 46, 3, 1201-1278 (2018) · Zbl 1429.60011
[59] Bardenet, R., Hardy, A.: Monte carlo with determinantal point processes (2016). arXiv preprint. arXiv:1605.00361 · Zbl 1491.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.