×

Mini-workshop: Relativistic fluids at the intersection of mathematics and physics. Abstracts from the mini-workshop held December 13–19, 2020 (online meeting). (English) Zbl 1473.00039

Summary: Relativistic Hydrodynamics is the description of fluid motion in regimes where relativistic effects are important. This is the case for fluids moving at high velocities or interacting with very strong gravitational fields, such as in the physics of black hole accretion disks or neutron star mergers but also in the microscopic dynamics of high-energy heavy-ion collisions. Although the first formulation of hydrodynamic equations dates back to the beginning stages of relativity theory, many mathematical problems remain wide open. In particular, the development of the theory of relativistic viscous fluids was slow and mathematical progress only made recently. The purpose of this Mini-Workshop was to bring together a diverse group of researchers, including specialists in nonlinear PDEs and physicists, to jumpstart the mathematical development of this field. This allowed for a vital exchange of ideas between mathematics and physics communities.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
35-06 Proceedings, conferences, collections, etc. pertaining to partial differential equations
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
83-06 Proceedings, conferences, collections, etc. pertaining to relativity and gravitational theory
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] E. Ames, H. Andréasson and O. Rinne, Dynamics of gravitational collapse in the axisym-metric Einstein-Vlasov system, arXiv:2010.15771 (2020).
[2] E. Ames, H. Andréasson and A. Logg, On axisymmetric and stationary solutions of the self-gravitating Vlasov system, Class. Quantum Grav. 33 (2016), 155008. · Zbl 1346.83019
[3] S. L. Shapiro and S. A. Teukolsky, Formation of naked singularities: The violation of cosmic censorship, Phys. Rev. Lett. 66 (1991), 994-997. · Zbl 0968.83515
[4] Carley, H. K., and Kiessling, M. K.-H., A study of the radiation-reaction on a point charge which moves along a constant applied electric field in an electromagnetic Bopp-Landé-Thomas-Podolsky vacuum, in preparation (2021).
[5] Elskens, Y., and Kiessling, M. K-H., Microscopic foundations of kinetic plasma theory: The relativistic Vlasov-Maxwell equations and their radiation-reaction-corrected gener-alization, J. Stat. Phys. 180:749-772 (2020). · Zbl 1448.82038
[6] Kiessling, M.K.-H., Force on a point charge source of the classical electromagnetic field, Phys. Rev. D 100, 065012(19) (2019);
[7] Errata, Phys. Rev. D 101:109901(E) (2020).
[8] Kiessling, M.K.-H., and Tahvildar-Zadeh, A. S., Bopp-Landé-Thomas-Podolsky electro-dynamics as initial value problem, in preparation (2021).
[9] C. Lübbe & J.A. Valiente Kroon, A conformal approach for the analysis of the non-linear stability of pure radiation cosmologies, Ann. Phys. 328, 1 (2013). · Zbl 1263.83188
[10] J. Joudioux, M. Thaller & J.A. Valiente Kroon, The conformal Einstein field equations with massless Vlasov matter, In arXiv arXiv:1906.10777[gr-qc]. To appear in Ann. Inst. Fourier.
[11] S. Beheshti, M. Normann & J.A. Valiente Kroon, Self-gravitating dust balls in an expanding universe. In preparation.
[12] J.A. Valiente Kroon, Conformal Methods in General Relativity . Monographs in Mathemat-ical Physics. Cambridge University Press (2016). · Zbl 1368.83004
[13] A. Burtscher, M. Kiessling, & A. S. Tahvildar-Zadeh, “Weak second Bianchi identity for spacetimes with time-like singularities,” (in preparation.)
[14] M. Kiessling, M. Lienert, & A. S. Tahvildar-Zadeh, “A Lorentz-Covariant Interacting Photon-Electron System in One Space Dimension,” Lett. Math. Phys. 110 3153-3195 (2020) [arXiv:1906.03632]. · Zbl 1456.81260
[15] M. Kiessling & A. S. Tahvildar-Zadeh, “The Dirac point electron in zero-gravity Kerr-Newman spacetime,” Journal of Mathematical Physics 56 042303 (2015) [arXiv:1410.0419]. · Zbl 1339.81040
[16] M. Kiessling & A. S. Tahvildar-Zadeh, “A novel quantum-mechanical interpretation of the Dirac equation,” Journal of Physics A 49 135301 (2016) [arXiv:1411.2296]. · Zbl 1456.81014
[17] M. Kiessling & A. S. Tahvildar-Zadeh, “On the Quantum Mechanics of a Single Photon,” Jour. Math Phys. 59, 112302 (2018).[arXiv:1801.00268] · Zbl 1404.81340
[18] A. S. Tahvildar-Zadeh, “On a zero-gravity limit of Kerr-Newman spacetimes and their elec-tromagnetic fields,” Journal of Mathematical Physics. 56 042501 (2015) [arXiv:1410.0416]. · Zbl 1315.83034
[19] T.A. Oliynyk, Dynamical relativistic liquid bodies, preprint [arXiv:1907.08192].
[20] T.A. Oliynyk, A priori estimates relativistic liquid bodies, Bull. Sci. Math. 141 (2017), 105-222. · Zbl 1366.35136
[21] Baiotti, L., & Rezzolla, L. 2017, RPPh, 80, 096901
[22] Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L1 (2019);
[23] Deconstructing General-Relativistic Viscous Fluid Dynamics Jorge Noronha References
[24] F. S. Bemfica, M. M. Disconzi, and J. Noronha, General-Relativistic Viscous Fluid Dynam-ics, arXiv:2009.11388 [gr-qc], 2020.
[25] F. S. Bemfica, M. M. Disconzi, and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Phys. Rev. D 98 (2018), 104064.
[26] F. S. Bemfica, M. M. Disconzi, and J. Noronha, Nonlinear Causality of General First-Order Relativistic Viscous Hydrodynamics, Phys. Rev. D 100 (2019), 104020. References
[27] L. Andersson and A.Y. Burtscher, On the asymptotic behavior of static perfect fluids, Ann. Henri Poincaré 20 (2019), no. 3, 813-857. · Zbl 1414.83023
[28] L. Bieri, Black hole formation and stability: a mathematical investigation, Bull. Amer. Math. Soc. (N.S.) 55 (2018), no. 1, 1-30. · Zbl 1381.83007
[29] A.Y. Burtscher, Initial data and black holes for matter models, in “Hyperbolic Problems: Theory, Numerics, Applications”, by A. Bressan, M. Lewicka, D. Wang, Y. Zheng (Eds.), AIMS Ser. Appl. Math., vol. 10, 336-345, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2020. · Zbl 1460.83004
[30] A.Y. Burtscher and P.G. LeFloch, The formation of trapped surfaces in spherically-symmetric Einstein-Euler spacetimes with bounded variation, J. Math. Pures Appl. 102 (2014), no. 6, 1164-1217. · Zbl 1302.83004
[31] D. Christodoulou, The formation of black holes in general relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009, x+589 pp. · Zbl 1197.83004
[32] S. Klainerman, J. Luk, Jonathan and I. Rodnianski, A fully anisotropic mechanism for formation of trapped surfaces in vacuum, Invent. Math. 198 (2014), no. 1, 1-26. · Zbl 1311.35311
[33] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965), 57-59. · Zbl 0125.21206
[34] M. Reintjes, Spacetime is locally inertial at points of general relativistic shock wave inter-action between shocks from different characteristic families, Adv. Theor. Math. Phys. 21 (2017), no. 6, 1525-1612. · Zbl 1470.83041
[35] M. Reintjes and B. Temple, No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families, Proc. A. 471 (2015), no. 2177, 20140834, 17 pp. · Zbl 1371.83020
[36] M. Reintjes and B. Temple, Shock wave interactions and the Riemann-flat condition: the geometry behind metric smoothing and the existence of locally inertial frames in general relativity, Arch. Ration. Mech. Anal. 235 (2020), no. 3, 1873-1904. · Zbl 1434.53081
[37] A.D. Rendall and B.G. Schmidt, Existence and properties of spherically symmetric static fluid bodies with a given equation of state, Classical Quantum Gravity 8 (1991), no. 5, 985-1000. · Zbl 0724.53055
[38] R. Schoen and S.T. Yau, The existence of a black hole due to condensation of matter, Comm. Math. Phys. 90 (1983), no. 4, 575-579. · Zbl 0541.53054
[39] G. Montana, L. Tolós, L., M. Hanauske, and L. Rezzolla, Constraining twin stars with GW170817, PRD 99(10) (2019), 103009.
[40] M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F. Galeazzi, and H. Stöcker, Ro-tational properties of hypermassive neutron stars from binary mergers, PRD 96(4) (2017), 043004.
[41] M.G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and K. Schwenzer, Viscous dissipation and heat conduction in binary neutron-star mergers, PRL 120(4) (2018), 041101.
[42] M. Hanauske, et.al., Neutron star mergers: Probing the EoS of hot, dense matter by gravi-tational waves, Particles 2(1) (2020), 44-56.
[43] M. Hanauske, et.al., Detecting the Hadron-Quark Phase Transition with Gravitational Waves, Universe 5(6) (2019), 156.
[44] L.R. Weih, M. Hanauske and L. Rezzolla, Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers, PRL 124(17) (2020), 171103.
[45] E. Most, L. Papenfort, V. Dexheimer, M. Hanauske, S. Schramm, H. Stöcker, and L. Rez-zolla, Signatures of quark-hadron phase transitions in general-relativistic neutron-star merg-ers, PRL 122(6) (2019), 061101.
[46] E. Most, L. Papenfort, V. Dexheimer, M. Hanauske, H. Stöcker, and L. Rezzolla, On the deconfinement phase transition in neutron-star mergers, The European Physical Journal A 56(2) (2020), 1-11.
[47] E. Ames, H. Andréasson, and A. Logg. On axisymmetric and stationary solutions of the self-gravitating Vlasov system. Class. Q. Grav., 33(15):155008, 26, 2016. · Zbl 1346.83019
[48] L. Andersson and M. Korzyński. Variational principle for the Einstein-Vlasov equations. arXiv e-prints, October 2019.
[49] H. Andréasson. The Einstein-Vlasov system/kinetic theory. Living Rev. Relativ., 14:2011-14, 55, 2011. · Zbl 1316.83021
[50] H. Andréasson and M. Kunze. Comments on the paper ’Static solutions of the Vlasov-Einstein system’ by G. Wolansky. Arch. Ration. Mech. Anal., 235(1):783-791, 2020. · Zbl 1434.35224
[51] H. Andréasson, M. Kunze, and G. Rein. Existence of axially symmetric static solutions of the Einstein-Vlasov system. Comm. Math. Phys., 308(1):23-47, 2011. · Zbl 1252.83048
[52] H. Andréasson, M. Kunze, and G. Rein. Rotating, stationary, axially symmetric spacetimes with collisionless matter. Comm. Math. Phys., 329(2):787-808, 2014. · Zbl 1294.83014
[53] V. A. Antonov. Remarks on the problems of stability in stellar dynamics. Soviet Astronom. AJ, 4:859-867, 1960.
[54] C. Bardos and P. Degond. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2(2):101-118, 1985. · Zbl 0593.35076
[55] J. Batt, W. Faltenbacher, and E. Horst. Stationary spherically symmetric models in stellar dynamics. Arch. Rational Mech. Anal., 93(2):159-183, 1986. · Zbl 0605.70008
[56] J. Binney and S. Tremaine. Galactic Dynamics: Second Edition. 2008. · Zbl 1136.85001
[57] D. Fajman, J.Joudioux, and J. Smulevici. The Stability of the Minkowski space for the Einstein-Vlasov system. arXiv e-prints, July 2017. To appear in Analysis & PDE.
[58] D. Fajman, J. Joudioux, and J. Smulevici. A vector field method for relativistic transport equations with applications. Anal. PDE, 10(7):1539-1612, 2017. · Zbl 1373.35046
[59] S Günther, J. Korner, T. Lebeda, B. Potzl, G. Rein, C. Straub, and J. Weber. A numerical stability analysis for the Einstein-Vlasov system. arXiv e-prints, September 2020.
[60] M. Hadžic, Z. Lin, and G. Rein. Stability and instability of self-gravitating relativistic matter distributions. arXiv e-prints, October 2018.
[61] D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein. Nonlinear stability of fluid and plasma equilibria. Phys. Rep., 123(1-2):116, 1985. · Zbl 0717.76051
[62] A. D. Ionescu, B. Pausader, X. Wang, and Klaus Widmayer. On the asymptotic behavior of solutions to the Vlasov-Poisson system. arXiv e-prints, May 2020.
[63] J. R. Ipser and K. S. Thorne. Relativistic, spherically symmetric star clusters. I. Stability theory for radial perturbations. Astrophys. J., 154:251-270, 1968.
[64] H. E. Kandrup and E. O’Neill. Hamiltonian structure of the Vlasov-Einstein system for generic collisionless systems and the problem of stability. Phys. Rev. D (3), 49(10):5115-5125, 1994.
[65] M. Lemou, F. Méhats, and P. Raphaël. Orbital stability of spherical galactic models. Invent. Math., 187(1):145-194, 2012. · Zbl 1232.35170
[66] H. Lindblad and M. Taylor. Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge. Arch. Ration. Mech. Anal., 235(1):517-633, 2020. · Zbl 1434.35234
[67] G. Moschidis. The characteristic initial-boundary value problem for the Einstein-massless Vlasov system in spherical symmetry. arXiv e-prints, December 2018.
[68] G. Rein and A. D. Rendall. Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Comm. Math. Phys., 150(3):561-583, 1992. · Zbl 0774.53056
[69] G. Rein. Non-linear stability for the Vlasov-Poisson system-the energy-Casimir method. Math. Methods Appl. Sci., 17(14):1129-1140, 1994. · Zbl 0814.76094
[70] G. Rein. Stationary and static stellar dynamic models with axial symmetry. Nonlinear Anal., 41(3-4, Ser. A: Theory Methods):313-344, 2000. · Zbl 0952.35096
[71] H. Ringström. On the topology and future stability of the universe. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2013. · Zbl 1270.83005
[72] J. Schaeffer. A class of counterexamples to Jeans’ theorem for the Vlasov-Einstein system. Comm. Math. Phys., 204(2):313-327, 1999. · Zbl 0956.83026
[73] S. L. Shapiro and S. A. Teukolsky. Equilibrium Stellar Systems with Spindle Singularities. Astrophysical Journal, 388:287, April 1992.
[74] G. Wolansky. Static solutions of the Vlasov-Einstein system. Arch. Ration. Mech. Anal., 156(3):205-230, 2001. · Zbl 0974.83002
[75] Ya. B. Zel’dovich and M. A. Podurets. The Evolution of a System of Gravitationally Inter-acting Point Masses. Soviet Astronomy, 9:742, April 1966.
[76] I. Anapolitanos, M. Hott, A simple proof of convergence to the Hartree dynamics in Sobolev trace norms. Journal of Mathematical Physics 57.12 (2016), 122108. · Zbl 1353.81132
[77] I. Anapolitanos, M. Hott, D. Hundertmark, Derivation of the Hartree equation for compound Bose gases in the mean field limit. Reviews in Mathematical Physics 29.07 (2017), 1750022. · Zbl 1375.35418
[78] Z. Ammari, F. Nier, Mean field limit for bosons and infinite dimensional phase-space anal-ysis. Annales Henri Poincaré. Vol. 9. No. 8 (2008), 1503-1574. · Zbl 1171.81014
[79] V. Bach, S. Breteaux, T. Chen, J. Fröhlich, I. M. Sigal, The time-dependent hartree-fock-bogoliubov equations for bosons. arXiv preprint arXiv:1602.05171, 1-36 (2016).
[80] N. Benedikter, M. Porta, B. Schlein, Effective evolution equations from quantum dynamics (Vol. 7). Berlin: Springer (2016). · Zbl 1396.81003
[81] N. Benedikter, P. T. Nam, M. Porta, B. Schlein, R. Seiringer, Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime. Communications in Mathemat-ical Physics, 374(3) (2020), 2097-2150. · Zbl 1436.81161
[82] N. Benedikter, P. T. Nam, M. Porta, B. Schlein, R. Seiringer, Correlation Energy of a Weakly Interacting Fermi Gas. arXiv preprint arXiv:2005.08933 (2020).
[83] L. Boßmann, S. Petrat, P. Pickl, A. Soffer, Beyond Bogoliubov Dynamics. arXiv preprint arXiv:1912.11004 (2019).
[84] T. Chen, C. Hainzl, N. Pavlović, R. Seiringer, Unconditional Uniqueness for the Cubic Gross-Pitaevskii Hierarchy via Quantum de Finetti. Communications on Pure and Applied Mathematics, 68(10) (2015), 1845-1884. · Zbl 1326.35332
[85] T. Chen, N. Pavlović, The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Funct. Anal. 260(4) (2011), 959-997. · Zbl 1213.35368
[86] T. Chen, N. Pavlović, Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in d= 3 based on spacetime norms. Annales Henri Poincaré. Vol. 15, No. 3 (2014), pp. 543-588. Springer Basel. · Zbl 1338.35406
[87] X. Chen, J. Holmer, On the rigorous derivation of the 2D cubic nonlinear Schrödinger equa-tion from 3D quantum many-body dynamics. Archive for Rational Mechanics and Analysis (2013), 210(3), 909-954. · Zbl 1288.35429
[88] X. Chen, J. Holmer, Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation. Archive for Rational Mechanics and Analysis, 221(2) (2016), 631-676. · Zbl 1338.35407
[89] X. Chen, J. Holmer, The derivation of the T 3 energy-critical NLS from quantum many-body dynamics. Inventiones mathematicae, 217(2) (2019), 433-547. · Zbl 1422.35148
[90] J. J. W. Chong, M. G. Grillakis, M. Machedon, Z. Zhao, Global estimates for the Hartree-Fock-Bogoliubov equations. arXiv preprint arXiv:2008.01753 (2020).
[91] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the Gross-Pitaevskii hierarchy for the dy-namics of Bose-Einstein condensate, Comm. Pure Appl. Math. 59 (12) (2006), 1659-1741. · Zbl 1122.82018
[92] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 (2007), 515-614. · Zbl 1123.35066
[93] L. Erdös, B. Schlein, H.-T. Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22 (4) (2009), 1099-1156 . · Zbl 1207.82031
[94] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dy-namics of Bose-Einstein condensates. Ann. of Math. (2) 172 (1) (2010), 291-370. · Zbl 1204.82028
[95] M. Grillakis, M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I. Communications in Mathematical Physics 324.2 (2013): 601-636. · Zbl 1277.82034
[96] M. Grillakis, M. Machedon, Pair excitations and the mean field approximation of interacting Bosons, II. Communications in Partial Differential Equations 42.1 (2017), 24-67. · Zbl 1371.35232
[97] M. Hott, Convergence rate towards the fractional Hartree-equation with singular potentials in higher Sobolev norms. arXiv preprint arXiv:1805.01807 (2018).
[98] E. H. Lieb, H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Communications in Mathematical Physics 112(1) (1987), 147-174. · Zbl 0641.35065
[99] D. Mitrouskas, S. Petrat, P. Pickl, Bogoliubov corrections and trace norm convergence for the Hartree dynamics. Reviews in Mathematical Physics, 31(08), 1950024 (2019). · Zbl 1435.35321
[100] A. Michelangeli, B. Schlein, Dynamical collapse of boson stars. Communications in Mathe-matical Physics 311.3 (2012), 645-687. · Zbl 1242.85007
[101] P.T. Nam, M. Napiórkowski, Bogoliubov correction to the mean-field dynamics of interacting bosons.Advances in Theoretical and Mathematical Physics 21, no. 3 (2017), 683-738. · Zbl 1382.82032
[102] P.T. Nam, M. Napiórkowski, A note on the validity of Bogoliubov correction to mean-field dynamics. Journal de Mathématiques Pures et Appliquées, 108(5) (2017), 662-688. · Zbl 1376.35016
[103] P.T. Nam, M. Napiórkowski, Norm approximation for many-body quantum dynamics: fo-cusing case in low dimensions. Advances in Mathematics, 350 (2019), 547-587. · Zbl 1416.81059
[104] P.T. Nam, M. Napiórkowski, J. Ricaud, A. Triay, Optimal rate of condensation for trapped bosons in the Gross-Pitaevskii regime. arXiv preprint arXiv:2001.04364 (2020).
[105] P.T. Nam, R. Salzmann, Derivation of 3D Energy-Critical Nonlinear Schrödinger Equation and Bogoliubov Excitations for Bose Gases. Communications in Mathematical Physics 375 (1) (2019), 1-77 .
[106] A. Knowles, P. Pickl, Mean-Field Dynamics: Singular Potentials and Rate of Convergence. Communications in Mathematical Physics. Volume 298, Issue 1 (2010). 101-138. · Zbl 1213.81180
[107] P. Pickl, A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., 97 (2) (2011), 151 -164. Reporter: Marvin R. Schulz · Zbl 1242.81150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.