×

Smoothed projection methods for the moment problem. (English) Zbl 0722.65096

The problem of reconstructing an unknown function f from a finite set of moments is discussed. The proposed algorithm is based on a point-wise optimization of the point-spread function. The method has several advantages: The ill-posed part of the reconstruction is contained in the construction of the basis functions. This step is independent of the data and can be done in advance with any desired accuracy. Then the algorithm proceeds by a point-wise reconstruction of the function f which is fast and makes the method suitable for local reconstructions.
The authors prove the convergence and the rate of convergence of their method and compare it with known methods as Backus-Gilbert and projection methods. The influence of noisy data is discussed and some numerical examples are given.
Reviewer: G.Grozev (Sofia)

MSC:

65R20 Numerical methods for integral equations
65R10 Numerical methods for integral transforms
65R30 Numerical methods for ill-posed problems for integral equations
44A60 Moment problems
45B05 Fredholm integral equations

References:

[1] Backus, G., Gilbert, F.: The resolving power of gross earth data. Geophys. J.R. Abstr. Soc.16, 169-205 (1968) · Zbl 0177.54102
[2] Bertero, M., Brianzi, P., Pike, E.R., Rebolia, L.: Linear regularizing algorithms for positive solutions of linear inverse problems. Proc. R. Soc. Lond. A415, 257-275 (1988) · Zbl 0636.65145 · doi:10.1098/rspa.1988.0013
[3] Davison, M.E., Gr?nbaum, F.A.: Convolution algorithms for arbitrary projection angles. IEEE Trans. on Nucl. Sci. NS-26, 2670-2673 (1979) · doi:10.1109/TNS.1979.4330508
[4] Haario, H., Somersalo, E.: The Backus-Gilbert method revisited: background, implementation and examples. Numer. Funct. Anal. Optimiz.9, 917-943 (1987) · Zbl 0619.65134 · doi:10.1080/01630568708816267
[5] Kirsch, A., Schomburg, B., Berendt, G.: On the Convergence of the Backus-Gilbert algorithm. Inverse Problems3, 341-346 (1987) · Zbl 0632.65132 · doi:10.1088/0266-5611/3/2/015
[6] Louis, A.K.: Inverse und schlecht gestellte Probleme. Stuttgart: Teubner 1989 · Zbl 0667.65045
[7] Louis, A.K., Maa?, P.: A mollifier method for linear operator equations of the first kind. Inverse Problems6, 427-440 (1990) · Zbl 0713.65040 · doi:10.1088/0266-5611/6/3/011
[8] Natterer, F.: Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math.28, 329-341 (1977) · Zbl 0364.65042 · doi:10.1007/BF01389972
[9] Papukashvili, N.R.: Convergence of a method for solving integral equations of the first kind (Russian, English summary). Soobshch. Akad. Nauk Gruzin. SSR129, 21-24 (1988) · Zbl 0643.65091
[10] Ramm, A.G.: Optimal estimation from limited noisy data. J. Math. Anal. Applic.125, 258-266 (1987) · Zbl 0649.42011 · doi:10.1016/0022-247X(87)90180-6
[11] Sabatier, P.C.: Basic Methods of Tomography and Inverse Problems. Malvern Physics Series (1987) · Zbl 0900.65395
[12] Schomburg, B.: On the approximation of the delta distribution in Sobolev spaces of negative order. Appl. Anal. (to appear) · Zbl 0716.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.