×

Double vortices and single-eyed vortices in a rotating cylinder under thermal gradients. (English) Zbl 1370.76023

Summary: In this paper we use nonlinear simulations to show the generation of single-cell vortices, two-cell vortices and double vortices in a cylinder non-homogeneously heated from below in a rotating reference frame. For moderate rotation rates we show the transition from an axisymmetric one-cell vortex, characterized by an updraft at the center of the cell, to an axisymmetric two-cell vortex, characterized by a central downdraft surrounded by updraft, i.e., a vortex that develops a central eye. This transition can be explained through a force balance analysis. When the thermal gradient increases beyond a certain threshold the axisymmetric single-eyed vortex loses the axisymmetry, the eye displaces from the center and tilts. For larger rotation rates the axisymmetric one-cell vortex bifurcates to a double vortex.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76U05 General theory of rotating fluids
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Rossby, H., A study of Bénard convection with and without rotation, J. Fluid Mech., 36, 2, 309-335 (1969)
[2] Liu, Y.; Ecke, R., Heat transport measurements in turbulent rotating Rayleigh-Bénard convection, Phys. Rev. E, 80, 3, Article 036314 pp. (2009)
[3] King, E. M.; Stellmach, S.; Aurnou, J. M., Heat transfer by rapidly rotating Rayleigh-Bénard convection, J. Fluid Mech., 691, 568-582 (2012) · Zbl 1241.76269
[4] Rubio, A.; Lopez, J. M.; Marques, F., Onset of Kuppers-Lortz-like dynamics in finite rotating thermal convection, J. Fluid Mech., 644, 337-357 (2010) · Zbl 1189.76210
[5] Lopez, J. M.; Marques, F., Centrifugal effects in rotating convection: nonlinear dynamics, J. Fluid Mech., 628, 269-297 (2009) · Zbl 1181.76064
[6] Hide, R.; Mason, P. J., Sloping convection in a rotating fluid, Adv. Geophys., 24, 47-100 (1975)
[7] Wordsworth, R. D.; Read, P. L.; Yamazaki, H. Y., Turbulence, waves, and Jets in a differentially heated rotating annulus experiment, Phys. Fluids, 20, Article 126602 pp. (2008) · Zbl 1182.76830
[8] Vincze, M.; Harlander, U.; von Larcher, Th.; Egbers, C., An experimental study of regime transitions in a differentially heated baroclinic annulus with flat and sloping bottom topographies, Nonlinear Processes Geophys., 21, 237-250 (2014)
[9] Hoyas, S.; Herrero, H.; Mancho, A. M., Thermal convection in a cylindrical annulus heated laterally, J. Phys. A: Math. Gen., 35, 4067-4083 (2002) · Zbl 1042.76025
[10] Hoyas, S.; Mancho, A. M.; Herrero, H.; Garnier, N.; Chiffaudel, A., Bénard-Marangoni convection in a differentially heated cylindrical cavity, Phys. Fluids, 17, Article 054104 pp. (2005) · Zbl 1187.76220
[11] Garnier, N.; Chiffaudel, A., Two dimensional hydrothermal waves in an extended cylindrical vessel, Eur. Phys. J. B, 19, 87-95 (2001)
[12] Navarro, M. C.; Mancho, A. M.; Herrero, H., Instabilities in buoyant flows under localized heating, Chaos, 17, Article 023105 pp. (2007) · Zbl 1159.37374
[13] Lopez, J. M.; Marques, F., Instability of plumes driven by localized heating, J. Fluid Mech., 736, 616-640 (2013) · Zbl 1294.76124
[14] Marques, F.; Lopez, J. M., Spontaneous generation of a swirling plume in a stratified ambient, J. Fluid Mech., 761, 443-463 (2014)
[15] Navarro, M. C.; Herrero, H., Vortex generation by a convective instability in a cylindrical annulus non-homogeneously heated, Physica D, 240, 1181-1188 (2011) · Zbl 1218.86002
[16] Castaño, D.; Navarro, M. C.; Herrero, H., Evolution of secondary whirls in thermoconvective vortices: strengthening, weakening, and disappearance in the route to chaos, Phys. Rev. E, 93, Article 013117 pp. (2016)
[17] Navarro, M. C.; Castaño, D.; Herrero, H., Thermoconvective instabilities to explain the main characteristics of a dust devil-like vortex, Physica D, 308, 109-115 (2015) · Zbl 1364.76043
[18] Fiedler, B. H., The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices, Atmos. Ocean, 32, 335-359 (1994)
[19] Fiedler, B. H., Wind-speed limits in numerically simulated tornadoes with suction vortices, Q. J. R. Meteorol. Soc., 124, 2377-2392 (1998)
[20] Fiedler, B. H., Suction vortices and spiral breakdown in numerical simulations of tornado-like vortices, Atmos. Sci. Lett., 10, 109-114 (2009)
[21] Nolan, D. S.; Farrell, B. F., The structure and dynamics of tornado-like vortices, J. Atmos. Sci., 56, 2908-2936 (1999)
[22] Rotunno, R., An investigation of a three-dimensional asymmetric vortex, J. Atmos. Sci., 41, 283-298 (1984)
[23] Rotunno, R., The fluid dynamics of tornadoes, Annu. Rev. Fluid Mech, 45, 59-84 (2013) · Zbl 1359.76324
[24] Church, C. R.; Snow, J. T.; Agee, E. M., Characteristic of tornado-like vortices as a function of swirl ratio: a laboratory investigation, J. Atmos. Sci., 36, 1755-1776 (1979)
[25] Davies-Jones, R. P., Tornado dynamics, (Kessler, E., Thunderstorm Morphology and Dynamics (1986), University of Oklahoma Press), 197-236
[26] Ward, N. B., The exploration of certain features of tornado dynamics using a laboratory model, J. Atmos. Sci., 29, 1194-1204 (1972)
[27] Lewellen, W. S.; Lewellen, D. C.; Sykes, R. I., Large-eddy simulation of a tornado’s interaction with the surface, J. Atmos. Sci., 54, 581-605 (1997)
[28] Hughes, S.; Randriamampianina, A., An improved projection scheme applied to pseudospectral methods for the incompresible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 28, 501-521 (1998) · Zbl 0932.76065
[29] Mercader, I.; Batiste, O.; Alonso, A., An efficient spectral code for incompressible flows in cylindrical geometries, Comput. & Fluids, 39, 215-224 (2010) · Zbl 1242.76221
[30] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High order splitting methods for the incompresible Navier-Stokes equations, J. Comput. Phys., 97, 414-443 (1991) · Zbl 0738.76050
[31] Orszag, S. A.; Patera, A. T., Secondary instability of wall-bounded sheer flows, J. Fluid Mech., 128, 347-385 (1983) · Zbl 0556.76039
[32] Canuto, C.; Hussain, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer Berlin · Zbl 0658.76001
[33] Fornberg, B., A Practical Guide to Pseudospectral Methods (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0912.65091
[34] Boronska, K., Three-Dimensional Patterns in Cylindrical Rayleigh-Bénard Convection (2005), Paris Sud University, (Ph.D. thesis)
[35] Tuckerman, L., Divergence-free velocity fields in nonperiodic geometries, J. Comput. Phys., 80, 403-441 (1989) · Zbl 0668.76027
[36] Rudiger, S.; Knobloch, E., Mode interaction in rotating Rayleigh-Bénard convection, Fluid Dyn. Res., 33, 477-492 (2003) · Zbl 1060.76549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.