×

A self-triggered stochastic model predictive control for uncertain networked control system. (English) Zbl 1520.93144

Summary: This paper is concerned with the stochastic model predictive control problem (SMPC) for a class of networked control systems with exogenous disturbances and restrictions on communication frequency. A self-triggered SMPC algorithm with an improved triggering condition is designed which integrates the co-design of both the current control inputs and the maximum sampling interval, with the aim of reducing the amounts of communication transmission while guaranteeing the specific performance. To give consideration to both probabilistic guarantee and computability, chance constraints on both states and inputs are transformed into deterministic ones by leveraging Cantelli’s inequality and linearisation techniques, so as to be solvable for the optimisation problem. Meanwhile, the nonconvex terms in dynamics of covariance propagation are averted through introducing the covariance upper bound control approach. The formulated online optimisation problem is convex to all decision variables. The theoretical analysis on recursive feasibility and closed-loop stability is addressed for the proposed self-triggered SMPC scheme. Finally, the efficacy and achievable performance of the proposed algorithm are showcased through numerical simulations.

MSC:

93B45 Model predictive control
93E20 Optimal stochastic control
93B70 Networked control
93C05 Linear systems in control theory

Software:

Mosek; Matlab; SeDuMi
Full Text: DOI

References:

[1] ApS, M. (2019). Mosek optimization toolbox for matlab. User’s Guide and Reference Manual, version 4.
[2] Berglind, J. B.; Gommans, T.; Heemels, W., Self-triggered MPC for constrained linear systems and quadratic costs, IFAC Proceedings Volumes, 45, 17, 342-348 (2012) · doi:10.3182/20120823-5-NL-3013.00058
[3] Berkel, F.; Liu, S., An event-triggered output-based model predictive control strategy, IEEE Transactions on Control of Network Systems, 6, 2, 822-832 (2018) · Zbl 1515.93158 · doi:10.1109/TCNS.6509490
[4] Brunner, F. D.; Heemels, M.; Allgöwer, F., Robust self-triggered MPC for constrained linear systems: A tube-based approach, Automatica, 72, 73-83 (2016) · Zbl 1344.93038 · doi:10.1016/j.automatica.2016.05.004
[5] Chen, J.; Sun, Q.; Shi, Y., Stochastic self-triggered MPC for linear constrained systems under additive uncertainty and chance constraints, Information Sciences, 459, 198-210 (2018) · Zbl 1448.93078 · doi:10.1016/j.ins.2018.05.021
[6] Dai, L.; Gao, Y.; Xie, L.; Johansson, K. H.; Xia, Y., Stochastic self-triggered model predictive control for linear systems with probabilistic constraints, Automatica, 92, 9-17 (2018) · Zbl 1388.93105 · doi:10.1016/j.automatica.2018.02.017
[7] Farina, M.; Giulioni, L.; Magni, L.; Scattolini, R. (2013)
[8] Farina, M.; Giulioni, L.; Scattolini, R., Stochastic linear model predictive control with chance constraints-a review, Journal of Process Control, 44, 53-67 (2016) · doi:10.1016/j.jprocont.2016.03.005
[9] Farina, M.; Scattolini, R., Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70, 258-265 (2016) · Zbl 1339.93049 · doi:10.1016/j.automatica.2016.04.008
[10] Ge, X.; Yang, F.; Han, Q. L., Distributed networked control systems: A brief overview, Information Sciences, 380, 117-131 (2017) · doi:10.1016/j.ins.2015.07.047
[11] Ghosh, B., Probability inequalities related to Markov’s theorem, The American Statistician, 56, 3, 186-190 (2002) · Zbl 1182.62031 · doi:10.1198/000313002119
[12] Hashimoto, K.; Adachi, S.; Dimarogonas, D. V., Self-triggered model predictive control for nonlinear input-affine dynamical systems via adaptive control samples selection, IEEE Transactions on Automatic Control, 62, 1, 177-189 (2016) · Zbl 1359.93279 · doi:10.1109/TAC.2016.2537741
[13] Hashimoto, K.; Adachi, S.; Dimarogonas, D. V., Event-triggered intermittent sampling for nonlinear model predictive control, Automatica, 81, 148-155 (2017) · Zbl 1376.93066 · doi:10.1016/j.automatica.2017.03.028
[14] Heemels, W.; Johansson, K. H.; Tabuada, P. (2012)
[15] Heirung, T. A. N.; Paulson, J. A.; Leary, J. O.; Mesbah, A., Stochastic model predictive control−how does it work \(####\), Computers & Chemical Engineering, 114, 158-170 (2018) · doi:10.1016/j.compchemeng.2017.10.026
[16] Hetel, L.; Fiter, C.; Omran, H.; Seuret, A.; Fridman, E.; Richard, J. P.; Niculescu, S. I., Recent developments on the stability of systems with aperiodic sampling: An overview, Automatica, 76, 309-335 (2017) · Zbl 1352.93073 · doi:10.1016/j.automatica.2016.10.023
[17] Lehmann, D.; Henriksson, E.; Johansson, K. H. (2013)
[18] Li, H.; Shi, Y., Event-triggered robust model predictive control of continuous-time nonlinear systems, Automatica, 50, 5, 1507-1513 (2014) · Zbl 1296.93110 · doi:10.1016/j.automatica.2014.03.015
[19] Li, H.; Yan, W.; Shi, Y., Triggering and control codesign in self-triggered model predictive control of constrained systems: With guaranteed performance, IEEE Transactions on Automatic Control, 63, 11, 4008-4015 (2018) · Zbl 1423.93147 · doi:10.1109/TAC.9
[20] Liu, C.; Li, H.; Gao, J.; Xu, D., Robust self-triggered min-max model predictive control for discrete-time nonlinear systems, Automatica, 89, 333-339 (2018) · Zbl 1388.93038 · doi:10.1016/j.automatica.2017.12.034
[21] Liu, L.; Liu, Y. J.; Chen, A.; Tong, S.; Chen, C., Integral barrier Lyapunov function-based adaptive control for switched nonlinear systems, Science China Information Sciences, 63, 3, 1-14 (2020) · Zbl 1336.93096 · doi:10.1007/s11432-012-4779-0
[22] Liu, Y. J.; Zhao, W.; Liu, L.; Li, D.; Tong, S.; Chen, C. P., Adaptive neural network control for a class of nonlinear systems with function constraints on states, IEEE Transactions on Neural Networks and Learning Systems (2021) · doi:10.1109/TNNLS.2021.3107600
[23] Marshall, A. W.; Olkin, I., Multivariate Chebyshev inequalities, The Annals of Mathematical Statistics, 31, 4, 1001-1014 (1960) · Zbl 0244.60013 · doi:10.1214/aoms/1177705673
[24] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O., Constrained model predictive control: Stability and optimality, Automatica, 36, 6, 789-814 (2000) · Zbl 0949.93003 · doi:10.1016/S0005-1098(99)00214-9
[25] Mesbah, A., Stochastic model predictive control with active uncertainty learning: A survey on dual control, Annual Reviews in Control, 45, 107-117 (2018) · doi:10.1016/j.arcontrol.2017.11.001
[26] Mi, X.; Zou, Y.; Li, S., Event-triggered MPC design for distributed systems toward global performance, International Journal of Robust and Nonlinear Control, 28, 4, 1474-1495 (2018) · Zbl 1390.93530 · doi:10.1002/rnc.v28.4
[27] Mi, X.; Zou, Y.; Li, S.; Karimi, H. R., Self-triggered DMPC design for cooperative multiagent systems, IEEE Transactions on Industrial Electronics, 67, 1, 512-520 (2019) · doi:10.1109/TIE.41
[28] Raimondo, D. M.; Limon, D.; Lazar, M.; Magni, L., Min-max model predictive control of nonlinear systems: A unifying overview on stability, European Journal of Control, 15, 1, 5-21 (2009) · Zbl 1298.93291 · doi:10.3166/ejc.15.5-21
[29] Schwarm, A. T.; Nikolaou, M., Chance-constrained model predictive control, AIChE Journal, 45, 8, 1743-1752 (1999) · doi:10.1002/(ISSN)1547-5905
[30] Sturm, J. F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11, 1-4, 625-653 (1999) · Zbl 0973.90526 · doi:10.1080/10556789908805766
[31] Sun, Z.; Rostampour, V.; Cao, M., Self-triggered stochastic MPC for linear systems with disturbances, IEEE Control Systems Letters, 3, 4, 787-792 (2019) · doi:10.1109/LCSYS.7782633
[32] Wei, G.; Liu, L.; Wang, L.; Ding, D., Event-triggered control for discrete-time systems with unknown nonlinearities: An interval observer-based approach, International Journal of Systems Science, 51, 6, 1019-1031 (2020) · Zbl 1483.93415 · doi:10.1080/00207721.2020.1746441
[33] Xu, J.; Wang, J.; Rao, J.; Zhong, Y.; Wang, H., Adaptive dynamic programming for optimal control of discrete-time nonlinear system with state constraints based on control barrier function, International Journal of Robust and Nonlinear Control, 32, 6, 3408-3424 (2022) · Zbl 1527.93233 · doi:10.1002/rnc.v32.6
[34] Zhang, D.; Shi, P.; Wang, Q. G.; Yu, L., Analysis and synthesis of networked control systems: A survey of recent advances and challenges, ISA Transactions, 66, 376-392 (2017) · doi:10.1016/j.isatra.2016.09.026
[35] Zhang, X. M.; Han, Q. L.; Ge, X.; Ding, D.; Ding, L.; Yue, D.; Peng, C., Networked control systems: a survey of trends and techniques, IEEE/CAA Journal of Automatica Sinica, 7, 1, 1-17 (2019) · doi:10.1109/JAS.6570654
[36] Zhang, X. M.; Han, Q. L.; Yu, X., Survey on recent advances in networked control systems, IEEE Transactions on Industrial Informatics, 12, 5, 1740-1752 (2015) · doi:10.1109/TII.2015.2506545
[37] Zou, Y.; Su, X.; Li, S.; Niu, Y.; Li, D., Event-triggered distributed predictive control for asynchronous coordination of multi-agent systems, Automatica, 99, 92-98 (2019) · Zbl 1406.93047 · doi:10.1016/j.automatica.2018.10.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.