×

Asymptotic expression for raw moment of the multiplicity of a part in a general partition function. (English) Zbl 1530.05011

Summary: Partitions appear across physics like Bose-Einstein statistics, dimer coverings, Potts model, crystal growth, Vasiliev theory, quasicrystals, Penrose-like random tilings, and so on. Since the general analytical study of partitions is rather tough, so statistical study is immensely preferred. This paper derives an asymptotic formula to evaluate the \(m\)-th raw moment of the multiplicity of a part for a broad category of partitions given by a specific generating function. In addition to being a multifold refinement/generalization of results in the literature, this work allows to calculate useful statistical quantities like mean and variance of the number of appearance of a part which is of deeper significance to analysts. The obtained expression is numerically validated to be in close agreement with the actual values. This study instigates the development of a general paradigm where partition theory is exposed to more sophisticated statistical analysis, thus, opening new avenues of research in this field.

MSC:

05A17 Combinatorial aspects of partitions of integers
11P82 Analytic theory of partitions
62E17 Approximations to statistical distributions (nonasymptotic)
82B03 Foundations of equilibrium statistical mechanics
Full Text: DOI

References:

[1] Actor, A. A., Infinite products, partition functions, and the Meinardus theorem, J. Math. Phys., 35, 5749-5764 (1994) · Zbl 0827.11058
[2] Andrews, G. E., The Theory of Partitions (Encyclopedia of Mathematics and its Applications) (1984), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0655.10001
[3] Banescu, M.; Popa, D., A multiple Abel summation formula and asymptotic evaluations for multiple sums, Int. J. Number Theory, 14, 04, 1197-1210 (2018) · Zbl 1410.11116 · doi:10.1142/s1793042118500732
[4] Chu, W., Abel’s lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math., 39, 4, 490-514 (2007) · Zbl 1131.33008 · doi:10.1016/j.aam.2007.02.001
[5] Corteel, S.; Hitczenko, P., Multiplicity and number of parts in overpartitions, Ann. Comb., 8, 287-301 (2004) · Zbl 1052.05011
[6] Destainville, N.; Govindarajan, S., Estimating the asymptotics of solid partitions, J. Stat. Phys., 158, 950-967 (2015) · Zbl 1318.11132 · doi:10.1007/s10955-014-1147-z
[7] Destainville, N.; Mosseri, R.; Bailly, F., Fixed-boundary octagonal random tilings: a combinatorial approach, J. Stat. Phys., 102, 147-190 (2001) · Zbl 0984.52007
[8] Elser, V., Comment on “quasicrystals: A new class of ordered structures”, Phys. Rev. Lett., 54, Article 1730 pp. (1985)
[9] Erdős, P.; Lehner, J., The distribution of the number of summands in the partitions of a positive integer, Duke Math. J., 8, 335-345 (1941) · JFM 67.0126.02
[10] Erdős, P.; Szalay, M., On the statistical theory of partitions, Topics in Classical Number Theory Colloq. Budapest 1981, Vol. I, Colloq. Math. Soc. János Bolyai, 34, 397-450 (1984) · Zbl 0548.10010
[11] Goh, W. M.Y.; Schmutz, E., The number of distinct part sizes in a random integer partition, J. Comb. Theory, Ser. A, 69, 149-158 (1995) · Zbl 0816.60008
[12] Gopakumar, R.; Vafa, C., M-theory and topological strings-I (1998)
[13] Gopakumar, R.; Vafa, C., M-theory and topological strings-II (1998)
[14] Goyal, M.; Rana, M., On central tendencies of the parts with some restrictions, Mathematical Reports, 20, 291-300 (2018) · Zbl 1424.05019
[15] Grabner, P.; Knopfmacher, A.; Wagner, S., A general asymptotic scheme for moments of partition statistics, preprint
[16] Gupta, R. K.; Lal, S., Partition functions for higher-spin theories in AdS, J. High Energy Phys., 71 (2012) · Zbl 1397.83150 · doi:10.1007/JHEP07(2012)071
[17] Hardy, G. H.; Ramanujan, S., Asymptotic formulae in combinatory analysis, Proc. Lond. Math. Soc., 17, 75-115 (1918) · JFM 46.0198.04
[18] Hirschhorn, M. D., The number of 1’s in the partition of n, Fibonacci Q., 51, 326-329 (2013) · Zbl 1295.11112
[19] Hirschhorn, M. D., The number of different parts in the partitions of n, Fibonacci Q., 52, 10-15 (2014) · Zbl 1351.11068
[20] Hutchinson, M.; Widom, M., Enumeration of octagonal tilings, Theor. Comput. Sci., 598, 40-50 (2015) · Zbl 1330.05034 · doi:10.1016/j.tcs.2015.03.019
[21] Kumar, A.; Rana, M., On the treatment of partitions as factorization and further analysis, J. Ramanujan Math. Soc., 35, 3, 263-276 (2020) · Zbl 1459.05011
[22] Levine, D.; Steinhardt, P. J., Quasicrystals: a new class of ordered structures, Phys. Rev. Lett., 53, 2477-2480 (1984)
[23] Mustonen, V.; Rajesh, R., Numerical estimation of the asymptotic behaviour of solid partitions of an integer, J. Phys. A, 36, 6651-6659 (2003)
[24] Mutafchiev, L.; Kamenov, E., Asymptotic formula for the number of plane partitions of positive integers, Compt. Rend. Acad. Bulg. Sci., 59, 361-366 (2006) · Zbl 1101.05009
[25] Rademacher, H., On the partition function p(n), Proc. Lond. Math. Soc., 43, 241-254 (1938) · JFM 63.0140.02
[26] Widom, M.; Mosseri, R.; Destainville, N.; Bailly, F., Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions, J. Stat. Phys., 109, 945-965 (2002) · Zbl 1025.52012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.