×

Growth model for fractal scale-free networks generated by a random walk. (English) Zbl 1514.05146

Summary: The diversity of networked systems with fractal structures suggests that knowing the underlying mechanism that generates the fractality is necessary for building a model of the development of complex networks. In the present paper, we propose a growth model of a network generated by a random walk and show that the evolving graph forms a fractal structure with various properties including the scale-free property, if the graph which provides a space where a random walk occurs by itself is formed by the random walk. The proposed model is regulated by two parameters \(p_{\mathrm{v}}\) and \(p_{\mathrm{e}} \), which define the probability of either a roundabout path via a new vertex or a shortcut being formed by the random walk, respectively. The power-law exponent \(\gamma\) describing the vertex degree distribution is determined by the ratio \(p_{\mathrm{e}}/p_{\mathrm{v}}\) and is related to an internal factor \(F_{\mathrm{I}}\) via the relation \(\gamma = 1/F_{\mathrm{I}} + 1\), where \(F_{\mathrm{I}}\) is a parameter that describes the local structure generated by the random walk. A sufficiently small \(p_{\mathrm{v}}\) provides the small-world property to the model network. The small-world property is usually considered to be incompatible with the fractal scaling property \(\langle M_{\mathrm{c}}\rangle \sim l_{\mathrm{c}}^{d_{\mathrm{c}}}\), where \(\langle M_{\mathrm{c}}\rangle\) is the average number of vertices which can be reached from a randomly chosen vertex in at most \(l_{\mathrm{c}}\) steps. However, we demonstrate that fractality can be reconciled with the small-world property by introducing a size-dependent fractal cluster dimension \(d_{\mathrm{c}} \).

MSC:

05C81 Random walks on graphs
05C80 Random graphs (graph-theoretic aspects)
68M10 Network design and communication in computer systems
05C82 Small world graphs, complex networks (graph-theoretic aspects)
Full Text: DOI

References:

[1] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry (2007), North-Holland: North-Holland Amsterdam · Zbl 0974.60020
[2] de Gennes, P. G., Scaling Concepts in Polymer Physics (1979), Cornell University Press: Cornell University Press Ithaca and London
[3] Mikosch, T., Elementary Stochastic Calculus With Finance in View (1999), World Scientific Pub. Co. Inc.
[4] D. Aldous, J.A. Fill, Reversible Markov chains and random walks on graphs. https://www.stat.berkeley.edu/users/aldous/RWG/Book_Ralph/book.html.
[5] Angles d’Auriac, J. C.; Benoit, A.; Rammal, R., Random walk on fractals: numerical studies in two dimensions, J. Phys. A: Math. Gen., 16, 4039-4051 (1983)
[6] Rammal, R., Random walk statistics on fractal structures, J. Stat. Phys., 36, 547-560 (1984) · Zbl 0587.60061
[7] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47-97 (2002) · Zbl 1205.82086
[8] Dorogovtsev, S. N.; Mendes, J. F.F., Evolution of networks, Adv. Phys., 51, 1079-1187 (2002)
[9] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167-256 (2003) · Zbl 1029.68010
[10] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002
[11] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[12] Erdős, P.; Rényi, A., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5, 17-61 (1960) · Zbl 0103.16301
[13] Barabási, A.-L.; Albert, R.; Jeong, H., Mean field theory for scale-free random networks, Physica A, 272, 173-187 (1999)
[14] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[15] Albert, R.; Jeong, H.; Barabási, A.-L., Diameter of the world wide web, Nature, 401, 130-131 (1999)
[16] Mandelbrot, B. B., The Fractal Geometry of Nature (1977), W. H. Freeman and Company: W. H. Freeman and Company New York · Zbl 0504.28001
[17] Csányi, G.; Szendröi, B., Fractal-small-world dichotomy in real-world networks, Phys. Rev. E, 70, 016122 (2004)
[18] Song, C.; Havlin, S.; Makse, H. A., Self-similarity of complex networks, Nature, 433, 392-395 (2005)
[19] Gallos, L. K.; Song, C.; Makse, H. A., A review of fractality and self-similarity in complex networks, Physica A, 386, 686-691 (2007)
[20] Kim, J. S.; Goh, K.-I.; Salvi, G.; Oh, E.; Kahng, B.; Kim, D., Fractality in complex networks: critical and supercritical skeltons, Phys. Rev. E, 75, 016110 (2007)
[21] Gallos, L. K.; Makse, H. A.; Sigman, M., A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks, Proc. Natl. Acad. Sci. USA, 109, 2825-2830 (2012)
[22] Gallos, L. K.; Sigman, M.; Makse, H. A., The conundrum of functional brain networks: small-world efficiency or fractal modularity, Front. Physiol., 3, 00123 (2012)
[23] Singh, S. S.; Khundrakpam, B.; Reid, A. T.; Lewis, J. D.; Evans, A. C.; Ishrat, R.; Sharma, B. I.; Singh, R. K.B., Scaling in topological properties of brain networks, Sci. Rep., 6, 24926 (2016)
[24] Cohen, R.; Erez, K.; ben Avraham, D.; Havlin, S., Breakdown of the internet under intentional attack, Phys. Rev. Lett., 86, 3682-3685 (2001)
[25] Cohen, R.; Havlin, S., Fractal dimensions of percorating networks, Physica A, 336, 6-13 (2004)
[26] Kawasaki, F.; Yakubo, K., Reciprocal relation between the fractal and the small-world properties of complex networks, Phys. Rev. E, 82, 036113 (2010)
[27] Song, C.; Havlin, S.; Makse, H. A., Origins of fractality in the growth of complex networks, Nat. Phys., 2, 275-281 (2006)
[28] Rozenfeld, H. D.; Havlin, S.; ben Avraham, D., Fractal and transfractal recursive scale-free nets, New J. Phys., 9, 175 (2007)
[29] Barrière, L.; Comellas, F.; Dalfó, C., Fractality and the small-world effect in Sierpinski graphs, J. Phys. A, 39, 11739-11753 (2006) · Zbl 1113.28007
[30] Saramäki, J.; Kaski, K., Scale-free networks generated by random walkers, Physica A, 341, 80-86 (2004)
[31] Ikeda, N., Network formed by traces of random walks, Physica A, 379, 701-713 (2007)
[32] Ikeda, N., Impact of initial lattice structures on networks generated by traces of random walks, Physica A, 389, 3336-3347 (2010)
[33] Ikeda, N., Condensation of edges on tree graphs induced by movement of a random walker, J. Stat. Mech., 033303 (2016) · Zbl 1456.82832
[34] Caravelli, F.; Hamma, A.; Di Ventra, M., Scale-free networks as an epiphenomenon of memory, Europhys. Lett., 109, 28006 (2015)
[35] Amorim, B.; Figueiredo, D.; Iacobelli, G.; Neglia, G., Growing networks through random walks without restarts, Complex Netw., VII, 199-211 (2016)
[36] Ikeda, N., Effects of triad formations stimulated by intermediaries on network topology, Physica A, 436, 897-908 (2015)
[37] Ikeda, N., Estimation of power-law exponent of degree distribution using mean vertex degree, Modern Phys. Lett. B, 23, 2073-2088 (2009) · Zbl 1193.68029
[38] Ikeda, N., Topology of growing networks accelerated by intermediary process, Physica A, 484, 378-393 (2017)
[39] Lovász, L., Random walks on graphs: a survey, (Combinatorics, Paul Erdos is Eighty, Vol. 2 (1993)), 1-46
[40] Noh, J. D.; Rieger, H., Random walks on complex networks, Phys. Rev. Lett., 92, 118701 (2004)
[41] Song, C.; Gallos, L. K.; Havlin, S.; Makse, H. A., How to calculate the fractal dimension of a complex network: the box covering algorithm, J. Stat. Mech., P03006 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.