×

A combination of residual distribution and the active flux formulations or a new class of schemes that can combine several writings of the same hyperbolic problem: application to the 1D Euler equations. (English) Zbl 1524.65305

Summary: We show how to combine in a natural way (i.e., without any test nor switch) the conservative and non-conservative formulations of an hyperbolic system that has a conservative form. This is inspired from two different classes of schemes: the residual distribution one [R. Abgrall, Commun. Appl. Math. Comput. 2, No. 3, 341–368 (2020; Zbl 1476.65202)], and the active flux formulations [T. A. Eyman and P. L. Roe, “Active flux schemes”, in 49th AIAA Aerospace Science Meeting, Orlando, Florida, January 4–7, 2011. Article ID AIAA 2011-382, 11 p. (2021; doi:10.2514/6.2011-382); T. A. Eyman, Active flux schemes. Detroit: University of Michigan (PhD Thesis) (2013); C. Helzel et al., J. Sci. Comput. 80, No. 3, 1463–1497 (2019; Zbl 1428.65020); W. Barsukow, J. Sci. Comput. 86, No. 1, Paper No. 3, 34 p. (2021; Zbl 1457.65068); P. Roe, J. Sci. Comput. 73, No. 2–3, 1094–1114 (2017; Zbl 1381.65073)]. The solution is globally continuous, and as in the active flux method, described by a combination of point values and average values. Unlike the “classical” active flux methods, the meaning of the point-wise and cell average degrees of freedom is different, and hence follow different forms of PDEs; it is a conservative version of the cell average, and a possibly non-conservative one for the points. This new class of scheme is proved to satisfy a Lax-Wendroff-like theorem. We also develop a method to perform non-linear stability. We illustrate the behaviour on several benchmarks, some quite challenging.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N06 Finite difference methods for boundary value problems involving PDEs

Software:

MOOD

References:

[1] Abgrall, R., Some remarks about conservation for residual distribution schemes, Comput. Methods Appl. Math., 18, 3, 327-351 (2018) · Zbl 1398.76090 · doi:10.1515/cmam-2017-0056
[2] Abgrall, R., The notion of conservation for residual distribution schemes (or fluctuation splitting schemes), with some applications, Commun. Appl. Math. Comput., 2, 3, 341-368 (2020) · Zbl 1476.65202 · doi:10.1007/s42967-019-00029-6
[3] Abgrall, R.; Bacigaluppi, P.; Tokareva, S., High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics, Comput. Math. Appl., 78, 2, 274-297 (2019) · Zbl 1442.65245 · doi:10.1016/j.camwa.2018.05.009
[4] Abgrall, R., Ivanova, K.: High order schemes for compressible flow problems with staggered grids (2021) (in preparation)
[5] Abgrall, R.; Lipnikov, K.; Morgan, N.; Tokareva, S., Multidimensional staggered grid residual distribution scheme for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 42, 1, A343-A370 (2020) · Zbl 1434.76062 · doi:10.1137/18M1223939
[6] Abgrall, R.; Tokareva, S., Staggered grid residual distribution scheme for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 39, 5, A2317-A2344 (2017) · Zbl 1374.76099 · doi:10.1137/16M1078781
[7] Barsukow, W., The active flux scheme for nonlinear problems, J. Sci. Comput., 86, 1, 3 (2021) · Zbl 1457.65068 · doi:10.1007/s10915-020-01381-z
[8] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050 (2011) · Zbl 1218.65091 · doi:10.1016/j.jcp.2011.02.026
[9] Dakin, G.; Després, B.; Jaouen, S., High-order staggered schemes for compressible hydrodynamics. Weak consistency and numerical validation, J. Comput. Phys., 376, 339-364 (2019) · Zbl 1416.76145 · doi:10.1016/j.jcp.2018.09.046
[10] Dobrev, VA; Kolev, T.; Rieben, RN, High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 5, B606-B641 (2012) · Zbl 1255.76076 · doi:10.1137/120864672
[11] Eyman, T.A.: Active flux schemes. PhD thesis, University of Michigan, USA (2013)
[12] Eyman, T.A., Roe, P.L.: Active flux schemes for systems. In: 20th AIAA Computationa Fluid Dynamics Conference, AIAA 2011-3840, AIAA, USA (2011)
[13] Eyman, T.A., Roe, P.L.: Active flux schemes. In: 49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-382, AIAA, USA (2011)
[14] Godlewski, E., Raviart, P.-A.: Hyperbolic systems of conservation laws. In: Mathématiques and Applications (Paris), vol. 3/4. Ellipses, Paris (1991) · Zbl 0768.35059
[15] Helzel, C.; Kerkmann, D.; Scandurra, L., A new ADER method inspired by the active flux method, J. Sci. Comput., 80, 3, 35-61 (2019) · Zbl 1428.65020 · doi:10.1007/s10915-019-00988-1
[16] Herbin, R.; Latché, J-C; Nguyen, TT, Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations, ESAIM Math. Model. Numer. Anal., 52, 3, 893-944 (2018) · Zbl 1405.35149 · doi:10.1051/m2an/2017055
[17] Hou, TY; Le Floch, PG, Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comput., 62, 206, 497-530 (1994) · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[18] Iserles, A., Order stars and saturation theorem for first-order hyperbolics, IMA J. Numer. Anal., 2, 49-61 (1982) · Zbl 0493.65039 · doi:10.1093/imanum/2.1.49
[19] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys., 112, 1, 31-43 (1994) · Zbl 0811.76044 · doi:10.1006/jcph.1994.1080
[20] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 381-394 (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[21] Loubère, R.: Validation test case suite for compressible hydrodynamics computation (2005). http://loubere.free.fr/images/test_suite.PDF
[22] Ramani, R.; Reisner, J.; Shkoller, S., A space-time smooth artificial viscosity method with wavelet noise indicator and shock collision scheme, part 2: the 2-D case, J. Comput. Phys., 387, 45-80 (2019) · Zbl 1452.76158 · doi:10.1016/j.jcp.2019.02.048
[23] Roe, PL, Is discontinuous reconstruction really a good idea?, J. Sci. Comput., 73, 1094-1114 (2017) · Zbl 1381.65073 · doi:10.1007/s10915-017-0555-z
[24] Vilar, F., A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. Comput. Phys., 387, 245-279 (2019) · Zbl 1452.65251 · doi:10.1016/j.jcp.2018.10.050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.